City of Springfield Water Pollution Control Section Pollution Complaint/Report Form

Report From: Received By: 5 Citizen Referred To: Fire Dept. Date of Incident: Public Information Office Health Department Other Complainant Information: Responsible Party Information: Name Name · Address Address 27 11 D. I DET ELECT Phone 881-6077 Phone Directions (if needed): Possible contamination of: _ soil _ groundwater surface water what body? Other pertinent information: Who to contact: DNR 417-837-695Ø Health Dept. DNR 314-634-2436 Sewer Maintenance EPA 913-236-3778 Sewer Construction Fire Dept. 864-1719 Chemtrec 1-800-424-9300 Police Dept. 864-1719 DOT Bob Schaefer NRC 1-800-424-8802 CU 831-832Ø Other Street Dept. Details of incident: GRAST Comins 00 STOOL. Action needed: JUST BAM

City of Springfield Water Pollution Control Section Pollution Complaint/Report Form

	" MOPOLL FORM
Report F	Date 1/21/00
Report From:	1/21/92
_ Citizen	Received By: 55
_ fire Dent	Referred To Nove
Public Information Office	Date of Incident:
Hooling Information Office	Date of Incident: 1, 247 AN
I II I	1/20/92
TEI CHIEL () COO	
TRLES IA	RROTT
complainant Info	0/1
Name Rance Information: R	Acnon-11
Address	esponsible Party Information:
Phone	ame
r none	ddress
Directions (if needed):	hone
(in needed):	
Possibl.	
Possible contamination of:	Q de
	soil
surface wa	u Compara L
Other pertinant other	ter what body?
Other pertinent information:	
- 1 DECO D	150000
- INGG	THICEE WITH
Who to contact:	:: ((1) (a) (a)
DVD Contact:	INHIBITION, PLANT RECOVERED WITHIN
DNR 417-837-695Ø	3-14 WITHIN
- DNR 314-634-2426	
- EPA 913-236-3778	- Health Dept. CHARLES PARROTT.
Fire Don't 05	- Carci Maintona-
Fire Dept. 864-1719	- Dewel Construct:
I - OTTICE DEDT 964 77-	_ Chemtrec 1-800-424-9300
-) SCHAFTER	_ DOT
_ CU 831-8320	
	NRC 1-800-424-8802
Details of incident: Evening PLANT RECEIVED	_ Other _
Or incident: Fus	
PLANT RECEIVED A US	Shift of
WATER 1000	TRISULTINON DO PUL
SMELL IT & LAUNDE	
VI all DI-A mit	CLEBNING FLUZZ
CLASS MANGE WITH THE	LIS DO SECO
INDICKT COLOR	SLUG 74 TO NOTED
	WASTERST
DO NOTICE - BENTAI	1) Samilian To
Action needed: cou Passing, P	WETORM DRALLE
A - CALL RENTALL	CANT RECOVERED STEDDIEM
Antomotive or an enthe U	NIFERM AAD WILL 1-28-92
TO CAUSE SUM ANYONG LUE F	EET US THEON'S
WAS MICK DULLE THIS NATU	es 1/3 A POTEUTIAL
· DAY And and	KEEP IN MIND THE
The sta	VEW WE WELL OFF LINE
	JIF WORK
lone	
(over) ADDRES	SS

(-29-92 Investigation Results
I called aaron's automolese of
talked to been tien about other
mention at the Worth I Hant,
the bad our knowledge but said
anythen I much that them Attent
with somether , the will sould back
1-29-75 7 called Kental Uniform. Oale
mathers was not ever the massage
to self me Dele malha returne of
nothing contract to and a desited
plants on this date
1-27-72

City of Springfield
Water Pollution Control Section
Pollution Complaint/Report Form
Date 7

Report From: Received By: S Citizen Aron Referred To: Fire Dept. Date of Incident: an Public Information Office Health Department Other Responsible Party Information: Complainant Information: Name Exprovee Name WOULD NOT SAY Address Address Phone Phone Directions (if needed): Possible contamination of: | soil | groundwater surface water what body? other SANITARY SEWER Other pertinent information: Who to contact: DNR 417-837-695Ø Health Dept. DNR 314-634-2436 Sewer Maintenance EPA 913-236-3778 Sewer Construction Fire Dept. 864-1719 Chemtrec 1-800-424-9300 Police Dept. 864-1719 DOT Bob Schaefer NRC 1-800-424-8802 CU 831-832Ø Other Street Dept. Details of incident: Company DUMPING FREON + ASBETTER Short SANTTAK Action needed: LECPONSE AVAGO DROUTHED (over) ADDRESS UNILNOWN

1635 W. Walnut Springfield MO 55806-1643

> Phone 417/866-1035 Facsimile 417-866-0235

TELECOPIER COVER LETTER

TE

March 7, 1990

LEP. NO:

LERI BY TE

Spill

TENTON

Share Wine - Chronel Santon in

The Market Marke

Aled Coloids

FOLL BILLION CONTROL DIVISION

BULLETIN PCD 7012

PERCOL 737

o force for force dispersion or agree to making our sense of promyge

The second secon

ed a siljetiquerdige omer Siljetiquerdige omer 1 198

20020112

The state of the s

v=0 and v and the first of the definition of $V:=\operatorname{Busson}(v)$

1005

PUICATION AND STORAGE

Stock solution (in product as supplied)

Face solution (in product as supplied)

nended storage periods:

The second of th

...1 year

should not be used

-on contras Speem On -one or leather our

of mountaining

Service and the

- -

a selection in the second

and the state of t

constent to the size of

SEP 1 1 1989

September 5, 1989

Mr. Steve Short City of Springfield Water Pollution Control and Inspection 1216 W Nichols Springfield, Mo 65802

Dear Mr. Short:

Per our phone conversation, I am enclosing the information you requested in regard to Todd possibly having the industrial sludge generated by our laundry operations sent to your Southwest plant facility.

Our plant generates approximately 8000 gallons of sludge every two weeks, which we would have pumped and hauled to your facility for processing one time every other week.

I've also attached copies of our annual sludge test analysis from the previous two years for your review. Please contact me if you have any questions.

Sincerely,

Gary Walker

General Manager

GW/mb enclosures Casa Mundaland Salahan Managarahan Managar

225 SOUTH WALNUT • REPUBLIC, MISSOURI 65738 • PHONE 417/732-7204

ECOLOGY AND ENVIRONMENTAL REPUBLIC SYSTEMS INC.

RECEIVED

P. O. BOX 4151 SPRINGFIELD, MO 65808

(417) 831-2109

2615 W. COLLEGE RD. SPRINGFIELD, MO 65802

August 9, 1989

Todd Corporation 225 SO. Walnut

Republic, MO. 65738

Laboratory Control NO. 689329

Sample ID: Wastewater sludge 1st tank

Hazardous Waste Identification

Ignitable Characteristics

Flashpoint

Corrosive Characteristics

pН

Reactive Characteristics

Water Heat Cyanide

Sulfide

Toxic Characteristics - E P Toxicity

Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver

Total Oil & Grease

Chlorides

Thank you.

TOC:

>140° F.

8.85

NONE Reactive NONE Reactive <0.1 mg/kg

.72.0 mg/kg Maximum Concentration <0.1 mg/kg5.0 ppm 100.0 ppm <1.0 mg/kg0.09 mg/kg1.0 ppm 0.06 mg/kg 5.0 ppm 0.07 mg/kg 5.0 ppm <0.05 mg/kg0.2 ppm <0.1 mg/kg1.0 ppm 0.01 mg/kg 5.0 ppm

4364.8 mg/kg 1559.8 mg/kg 1071.5 mg/kg

Sample collected June 22, 1989.

Donald R. Vassar

dfv

ECOLOGY AND ENVIRONMENTAL SYSTEMS INC.

P. O. BOX 4151 SPRINGFIELD, MO 65808

(417) 831-2109

2615 W. COLLEGE RD. SPRINGFIELD, MO 65802

August 3, 1988

Todd Corporation 225 SO. Walnut

Republic, MO. 65738

Sample ID: wastewater sludge lst tank

Hazardous Waste Identification

Ignitable Characteristics

Flashpoint

Corrosive Characteristics

Ha

Reactive Characteristics

Water

Heat

Cyanide

Sulfide

Toxic Characteristics - E P Toxicity

Arsenic

Barium

Cadmium

Chromium "

Lead

Mercury

Selenium

Silver

Total Oil & Grease

Chlorides

TOC

Laboratory Control NO. 688259

>140° F.

8.3

NON Reactive

NON Reactive

 $1.4 \, \text{mg/l}$

 $8.9 \, \text{mg/l}$ Maximum

Concentration

< 0.1 mg/1 $5.0 \, \text{mg/l}$

10.0 mg/1100.0 mg/l

 $1.0 \, \text{mg/l}$ <0.1 mg/1

<0.1 mg/15.0 mq/1

 $0.2 \, \text{mg/1}$ $5.0 \, \text{mg/l}$

<0.1 mg/1 $0.2 \, \text{mg/1}$ <0.1 mg/l $1.0 \, \text{mg/l}$

 $0.1 \, \text{mg/l}$ $5.0 \, \text{mg/l}$

 $639.0 \, \text{mg/l}$

93,590 mg/l

306.8 mg/l

Sample received June 27, 1988.

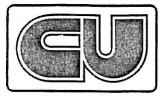
Thank you.

Donald R. Vassar

dfv

CITY OF SPRINGFIELD INTER-OFFICE MEMORANDUM

ATTENTION OF FILE	DATE July 17, 1989
DEPARTMENT	


Re: City Utilities

Dave Fraley called this office to advise us the Electric Meter Shop on West Grand is now using a new solvent that contains HCl. They will add sodium bicarbonate to neutralize the acid before discharging to the sanitary sewer. Dave indicated he would provide the shop with pH sticks to monitor the process to 5.5 - 9.0.

cc: file

Alow Mas

Steve Short

301 E. Central • P.O. Box 551 • Springfield, Missouri 65801 • (417) 831-8311

SEPTEMBER 8, 1987

MEMORANDUM TO: DAVID M. FRALEY, Ph.D. ENVIRONMENTAL RESULTS SPECIALIST POWER PRODUCTION

SUBJECT: CLEANING SOLVENTS

	. /			
SAMPLE ID	BIO-SOLVE513 VMC	CALHOUN TOOLSHOP	PRINCE LN. AGI-TEEN	GAS METER SHOP
LAB NO.	387-0420	387-0421	387-0422	387-0423
AL	_	< 10	< 10	< 10
CD	0.5	*		
CR	< 0.5	< 10	< 10	< 10
Си	8.5	< 10	156	< 10
FE	22.9	< 10	18.4	< 10
Рв	6.1	30	20	26
SI	_	< 10	11	10
SN		< 10	< 10	< 10
ZN	8.2	< 10	234	< 10

ALL RESULTS IN UG/L. * NO ORGANO-METALLIC STD FOR CD.

DIRECTOR - LABORATORIES

OPERATIONS

JTW:KK

RECEIPT FOR CERTIFIED MAIL

NO INSURANCE COVERAGE PROVIDED— NOT FOR INTERNATIONAL MAIL

			ist Carpet Cl	eaning
Ni	х,	М	0 65714	
PO	STÁ	GE _		\$
	CE	RTIF	IED FEE	c
EES		SP	ECIAL DELIVERY	C
H.		RE	STRICTED DELIVERY	0
STER FI	VICES	VICE	SHOW TO WHOM AND DATE DELIVERED	d
CONSUET POSTMASTER FOR FEES	OPTIONAL SERVICES	RETURN RECEIPT SERVICE	SHOW TO WHOM, DATE. AND ADDRESS OF DELIVERY	d
NSUET	OPTION	AN REC	SHOW TO WHOM AND DATE DELIVERED WITH RESTRICTED DELIVERY	
00		RETU	SHOW TO WHOM, DATE AND ADDRESS OF DELIVERY WITH RESTRICTED DELIVERY	G
TO	TAL	POS	TAGE AND FEES	s

K.C.	דחר	1	C	1984
SENDER: Complete items 1, 2, and 3 Add your address in the "RI reverse." 1. The following service is requested (SMEATERS.	Mires	Simu	MORDWEST 121
1. The following service is requested (ed. s of d ed. s of d	eliv	ery	¢
2. ARTICLE ADDRESSED TO: Don Arnold, Adua-Mist Ca Rt. 2, Box 191-H Nixa, MO 65714			C1	eanin
3. ARTICLE DESCRIPTION: REGISTERED NO. CERTIFIED NO. 704 9037052		461	JRE	ED NO.
(Always obtain signature of addre		or a	qer	nt)
I have received the article described at SIGNATURE Addressee	1	thor	ize	d agent
DATE OF DELIVERY 1.0 - 16 - 94 5. ADDRESS(Complete only if requested)	F	POS	TM.	ARK
6. UNABLE TO DELIVER BECAUSE:				RK'S TIALS

PS Form 3800

**GPO: 19/7-0-249-505

October 4, 1984

Mr. Don Arnold Aqua-Mist Carpet Cleaning Rt. 2, Box 191-H Nixa, MO 65714

Dear Mr. Arnold:

On Friday, September 28, 1984, this office received a citizen's complaint that one of your vehicles was dumping carpet cleaning waste onto a street which is tributary to the Southern Hills Lake area.

Please be advised that such a discharge is a violation of Federal, State and City Water Pollution Control Laws and a violation of City Health Ordinances. It is specifically a violation of Chapter 30, Sewer Use Ordinance, section 30-4, "Deposit of Objectionable Waste on Public and Private Property Prohibited" and section 30-8 "Discharge of Sanitary Sewage, Industrial Wastes or Other Polluted Waters into Natural Outlets or Storm Sewers."

This office would advise you to cease discharge immediately and to dispose of such wastes in a proper waste treatment system.

If you have any questions please don't hesitate to call 864-1924.

Yours truly,

Karen Chandler Water Pollution Control Inspector II Surveillance and Enforcement

KC: js

cc: Mr. Ed Sears, Missouri Dept. of Natural Resources Mr. Harold Bengsch, Director of Health Mr. Robert Schaefer, P.E., Supt. of Sanitary Services File C. Dean Martin, Emergency Response Coordinator Missouri Department of Natural Resources P.O. Box 1368 2010 Missouri Blvd. Jefferson City, MO 65102

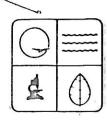
Dear Mr. Martin:

In reply to our phone conversation on April 18, 1984, I am enclosing a copy of the City of Springfield's SEWER USE ORDINANCE - Chapter 30. The section that you would be most concerned with is Sec. 30-18.

Also, you requested a copy of the proposed FUEL TANK TESTING ORDINANCE. In checking with your Regional Office, Mr. John Nixon has already forwarded that information as well as a copy of ordinances from other cities to Mr. Jim Long on April 18, 1984. If you do not receive this information, please let me know and I will be glad to provide it to you.

If you have any questions, please feel free to call at 864-1924.

Yours truly


Gene Pabst

Water Pollution Control Inspector III

Surveillance & Enforcement

GP:js

cc: Mr. Henry Cole, P.E., Sanitary Engineer File

MISSOURI DEPARTMENT OF NATURAL RESOURCES P.O. Box 1368 2010 Missouri Blvd. Jefferson City, Missouri 65102 (314) 751-3241

MEMORANDUM

Home

Date:

January 9, 1984

To:

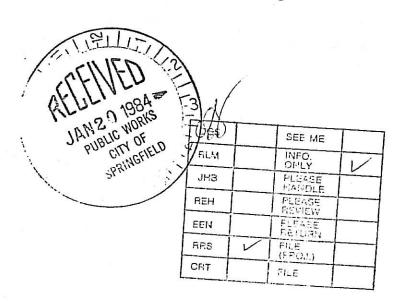
City Officials and Regional Office Staff

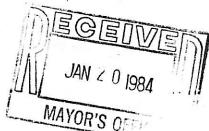
From:

Frank Dolan Fink Dola.

Subject:

Pretreatment Standards


EPA has set the final rule for industries in the Coil Coating and Electrical and Electronic Components Categories.


Coil Coating Industries are any coil coating facilities or can making facilities. Electronic Components Categories include just the Cathode Ray Tube Manufacturing and Luminescent Materials Manufacturing parts at this time. Coil Coating Industries have to meet the Federal Pretreatment Standards by November 17, 1986. Cathode Ray Manufacturers have to meet standards by July 14, 1987. Existing Luminescent Materials Manufacturers do not have Federal Pretreatment Standards to meet.

For specific standards, contact your regional office.

FD/ji

JAN 2 4 1984

Christopher S. Bond Governor Fred A. Lafser Director

Division of Environmental Quality Robert J. Schreiber Jr., P.E. Director

mure

Cypress Truck Lines, Inc. 1746 E. Adams Jacksonville, Fla 32202

Certified No. PO4 9037037

Dear Sir:

Please be advised that on June 14, 1983, personnel from the City of Springfield Water Pollution Control Section, Surveillance and Enforcement Branch, responded to a diesel fuel spill within the corporate limits of the City. The spill occurred when Mr. Carl Ackman, a driver for your company, was involved in a traffic accident that resulted in the loss of 150 gallons of diesel fuel from the saddle tank of truck #277260-5 onto the highway. This resulted in City personnel having to remove the diesel fuel from the highway.

The ordinances of the City provide for the recovery of the costs involved in the abatement of a violation under emergency conditions. Payment of those costs should be made to the City of Springfield, Sanitary Services Department, and sent to:

City of Springfield City Hall, Room 210 830 Boonville Springfield, MO 65802 Attention: Mr. Robert Schaefer

Attached to this letter, please find a detailed explanation of the costs involved and a copy of Chapter 30 of the Springfield City Code. If you have any questions please don't hesitate to call 417-864-1924.

Yours truly,

Karen A. Chandler Water Pollution Control Inspector II Surveillance and Enforcement

KAC: js

Enclosure

co: Robert R. Schaefer, P.E., Supt. of Sanitary Services John R. Nixon, Missouri Dept. of Natural Resources Doug Frame, Oil and Hazardous Materials Spills, E.P.A. Fred Fantauzzi, Director of Finance

ADDRESS UNKKOUN

PERSONHEL COSTS - Surveillance & Hnforcement

June 14, 1983 2 Inspectors	Time at Site 1.5 hrs. each	Cost \$38.91
PERSONNEL COSTS - St	treet Department	
June 14, 1983 3 Crewmen	Time at Site 2 hrs. each	Cost \$49.86
EQUIPMENT COST Dump Truck miles 4 WD Truck miles Sawdust	20 @ 1.10 10 @ .50 4 tons	\$22.00 5.00 40.00 \$67.00
TOTAL COST	a e a a e e e e e a a a a a a a a a a a	\$155.77

Charlese

Belly for De 1552 Cypren Freick

Charlen

read payment

P04 9037037

RECEIPT FOR CERTIFIED MAIL

NO INSURANCE COVERAGE PROVIDED— NOT FOR INTERNATIONAL MAIL (See Reverse)

S1	7. 0., S	TAT	E AND ZIP CODE	15
PC	STA	GE	sonville,	5
	CE	RTI	FIED FEE	c
E			PECIAL DELIVERY	c
FOR		RI	ESTRICTED DELIVERY	¢
ASTER	VICES	AVICE	SHOW TO WHOM AND DATE DELIVERED	¢
CONSULT POSTMASTER FOR FEES	OPTIONAL SERVICES	RETURN RECEIPT SERVICE	SHOW TO WHOM, DATE, AND ADDRESS OF DELIVERY	¢
ONSULT	OPTIO	JAN REC	SHOW TO WHOM AND DATE DELIVERED WITH RESTRICTED DELIVERY	c
٥		RETU	SHOW TO WHOM, DATE AND ADDRESS OF DELIVERY WITH RESTRICTED DELIVERY	¢
тот	ALF	OST	AGE AND FEES	

ruim 3800, Apr.

POSTMARK OR DATE

4/	
To Sory	
DateTime	Ву
While You V	Nere Out
Mr. as Duna	Uraland
of it the B	entouts
☐ Telephoned ☐ Will Call Again ☐ Please Call	☐ Called to See You ☐ Wants to See You ☐ Rush!
Phone fallo Message	regar Befalana. atars)
	the out
telo	500
	, '
	V
2	LE 87

CITY OF SPRINGFIELD INTER-OFFICE MEMORANDUM

ATTENTION OF	FILE	DATE	June 13, 1983
DEPARTMENT			

On Sunday, June 12, 1983, at approximately 4:45 p.m. I received a call on the pager to call the Northwest Treatment Plant. The operator reported floating sludge on the primary tanks and he took a sample of this at 5:00 p.m. I also took sample of the discharge from the airport lift station at the manhole on Radio Lane at 7:30 p.m.

SIGNED

cc: Henry Cole, P.E., Sanitary Engineer
Bob Schaefer, P.E., Superintendent of Sanitary Services

Taren Chandler
Karen Chandler

misc.

INDUSTRIAL WASTE
MONITORING AND ANALYSES REPORT

(2 SAMPLES)

Plant	DEICH PA	ACKING DEAD S	ICDate	3/2/8	3 Time	e 1:14	An-
Samplin	g point EAST	- + WEST M	ethod_				1.1.92
		Remov			Time		
Flow		Meter Start_					
Seal		Entered in bil					
Sample	No. Time	Meter Reading	Test	Date	Analyst	Result	#
1			BOD ₅				
2			Total SS		,		
3			pН				
4			Organic Carbon				
5			Total Carbon				
6			C.O.D.				
. 7			0-P0 ₄ -P				
8			TP 4				- 55
9			NH ₃ -N				
10			TKN				
11			Phenol			76	
12			Oil & Grease				
13			Nitrate		1		
14			Nitrite		i		
15		Avity.					
16	X-AAV FL	DURESENCE AND	Atomic 4 aca	PELON	111011		
17	INDICATEL	MATERIALISCO	MPOCED OF C	15.110	ANALY	3/3	
18	SULFATE.	SILICATE AND I	ROW FEAD AND	TITA	ALUM	INUM	
19	ABSENT.		MON. ELAU ANL	IIIA	TIVM AR	E	
20							
21							
22							
23							
24					<u> </u>		
11000		<u></u>					

February 1, 1983

FEB 2 1983

R. J. Poindexter, Claims Adjuster Auto-Owners Insurance Branch Claim Office Box 68 Oskaloosa, Iowa 52577

Re: File No: 26 5157 82

Insured: Control Services, Inc., et al

Dear Mr. Poindexter:

As requested in your letter of January 19, 1983, the City employees who investigated the damage referred to in our claim, were Randy Lyman, Water Pollution Control Inspector III, and Steve Short, Water Pollution Control Inspector II.

We would appreciate your prompt payment of this claim.

Very truly yours,

Robert R. Schaefer, P.E.

Superintendent of Sanitary Services

RRS:cc

ccs: City Utilities of Springfield, Legal Department
Department of Consumers Affairs, Division of Insurance, State File #82J004989
Randy Lyman, Water Pollution Control Inspector III

AUTO-OWNERS INSURANCE COMPANY AUTO-OWNERS LIFE INSURANCE COMP. HOME-OWNERS MUTUAL INSURANCE CO. OWNERS INSURANCE CO. PROPERTY-OWNERS INSURANCE CO.

January 19, 1983

BRANCH CLAIM OFFICE Box 68, Oskaloosa, Iowa 52577 Phone: (515) 673-8301

City of Springfield Department of Public Works 830 Boonville Avenue Springfield, Missouri 65801

ATTENTION: Robert R. Schaefer, P.E.

Superintendent of Sanitary Services

REFERENCE: File No.: 26 5157 82

Insured: Control Services, Inc.

Dear Sir:

Your recent letter, dated January 7, 1983, addressed to our Branch Claim Office has been sent to me.

I refer you to your last paragraph.

Please supply the names of eyewitnesses so that our investigators may question them.

Very truly yours,

R. J. Poindexter Claims Adjuster

RJP/reh

State File # 82 9 004989

Apartment & Consciences alfaire

Animeron of Sourance

Box 6 9 0

Defferson belig, Ma 65102

Lexerment, Barry, Elle (Conscient lam y lue lam eng

Ó	O SENDER: Complete items 1, 2, 1, Add your address in reverse.
	1. The following service is requested (check one.) Show to whom and date delivered
	(CONSULT POSTMASTER FOR FEES)
	2. ARTICLE ADDRESSED TO: R. J. Poindexter, Claims Agent Branch Claim Office Auto-Owners Insurance Box 68 Oskaloosa, Iowa 52577 3. ARTICLE DESCRIPTION: REGISTERED NO. CERTIFIED NO. INSURED NO. P04 9044288
	[Always obtain signature of addressee or agent] I have received the article described above. SIGNATURE DAddressee Dauthorized agent
	R. J. Poindexter, Claims Agent Branch Claim Office Auto-Owners Insurance By 68 By 68 Oskaloosa, Iowa 52577 3. ARTICLE DESCRIPTION: REGISTERED NO. CERTIFIED NO. INSURED NO. P04 9044288 (Always obtain signature of addressee or agent) I have received the article described above. SIGNATURE DADdressee Duthorized agent A. DATE OF DELIVERY JAN 12 1982 5. ADDRESS (Complete only if requested) 6. UNABLE TO DELIVER BECAUSE: CLERA'S INTIALS
	G. UNABLE TO DELIVER BECAUSE: CLERA'S
9	公GPO: 1979-288-848
Form 3800, Apr. 19	76
POSTM	CONSULT POSTMASTER FOR FEES OPTIONAL SERVICES OPTIONAL SERVICES

er)	1/7/83 (Lett. 1/10/83 (Mail	
	WARK OR DATE	~
S	POSTAGE AND FEES	
	SHOW TO WHOM, DATE AND ADDRESS OF DELIVERY WITH RESTRICTED DELIVERY	Barrer Lance
6	JRN REC SHOW 10 W	01 110
		INT SEH
	SHOW TO WHOM AND	VILES
	RESTRICTED DELIVERY	
	CERTIFIED FEE	0
in	IAGE	1 =
52577	Skaloosa, Iowa	1 00 10
, Agent	Owners Ins.	C. IT.
Claims	7 7 7	_
PROVIDED— L MAIL	O INSURANCE COVERAGE NOT FOR INTERNATIONA (See Reverse)	- Z
TED MA	EIPT FOR CERTIF	()
428	P04 90 Z	

CERTIFIED MAIL NO. PO4 9044288 RETURN RECEIPT REQUESTED

R. J. Poindexter, Claims Adjuster Branch Claim Office Auto-Owners Insurance Eox 68 Oskaloosa, Iowa 52577

Ra: File No: 26 5157 82

Insured: Control Services, Inc., et al

Dear Mr. Poindexter:

I have received a copy of your letter dated December 17, 1982, to City Utilities of Springfield, Missouri in which you have denied a claim against Control Services, Inc., for damage to a sewer manhole and cover. The reason for denial of this claim is that Control Services, Inc., was not working in or around that area on October 1, 1982. This letter is to clarify to you that our claim did not mean to indicate that the damage happened on October 1, 1982, but that was the date the damage was discovered by City employees. The damage was never reported to the City but was found during our routine checking of the sewer system. Our inspection of this area revealed that the entire right of way for City Utilities' power line had been cleared of all brush and trees. The sewer manhole was within the area of this clearing and it was evident to the City that the damage was caused by equipment removing the brush from the right of way.

Based on our observations it is felt that Control Services, Inc., damaged this sewer manhole and is responsible for payment for repairs. It should be noted that this damage should have been reported to the City immediately because a blockage in the sewer line and backups into basements and into streams could have occurred. We would appreciate your prompt review of this matter and payment of the claim in the amount of \$269.94.

If you require further information, please let me know.

Very truly yours,

Robert R. Schaefer, P.E. Superintendent of Sanitary Services

RRS:cc

cc: Mrs. Dixie Fountain, C.U. Legal Department

Maisc

AUTO-OWNERS INSURANCE COMPANY AUTO-OWNERS LIFE INSURANCE COMI HOME-OWNERS MUTUAL INSURANCE CO. OWNERS INSURANCE CO. PROPERTY-OWNERS INSURANCE CO.

BRANCH CLAIM OFFICE Box 68, Oskaloosa, Iowa 52577 Phone: (515) 673-8301

December 17, 1982

City Utilities 301 E Central St Jewell PO Box 551 Springfield, MO 65801

ATTN: Mrs. Dixie Fountain

Paralegal Assistant

RE: File No: 26 5157 82

Insured: Control Services, Inc. et al

D/Loss: 10/1/82

To Mrs. Dixie Fountain:

Your letter dated 11/29/82 and directed to Control Services, Inc. in Marion, IA has now been turned in to our agent's office and then to me. From the information given to us by Mr. Hoover of Control Services, Inc. they did not damage the manhole as you allege.

It is our understanding that they were not working in or around that area on 10/1/82. Please accept this letter as the denial of your claim against Control Services, Inc.

Very truly yours,

R. J. Poindexter
Claims Adjuster

RJP:cc

cc: Mr. Herbert Hoover Rt 2 Marion, IA 52302

> IAS, Inc. PO Box 646 Marion, IA 52302

Mr. Dale Lindsey Auto Owners Ins. Co. PO Box "H" Camdenton. MO 65020

JEWELL P.O. SPRINGFIELD, MISSOURI TELEPHONE 417- 8

November 29, 1982

Control Services, Inc. Box 25 Marion, Iowa 52302

Re: Contract No. 507-E Brush Mower Clearing

Gentlemen:

We enclose billing in amount of \$269.94 from the City of Springfield, Missouri, for damage to manhole cover on October 1, 1982. Under the terms of the contract, we request that the billing by the City of Springfield be promptly handled by Control Services or your insurance carrier.

Very truly yours,

CITY UTILITIES OF SPRINGFIELD, MO

By: Mrs. Dixie Fountain Paralegal Assistant

DF/pk

cc: Dale Lindsey - Auto-Owners Ins.
Bill Foster - City of Springfield, Dept. of Public Works

Fred Ipock Jack Hadsall Nancy Goth

City of Springfield, Missouri

November 9

82

		19
M	Electric Dept. City Utilities 301 E. Central	
	Springfield, MO	

SPRINGFIFLD MO

The following is the amount of labor, material and equipment used to repair manhole which was damaged by C.U. cleaning out brush north of Dickerson Zoo Park 10-1-82:

Labor \$122.72 Material 29.22 Equipment 118.00

TOTAL \$269.94 PAYMENT DUE WITHIN 30 DAYS OF STATEMENT DATE

Please make check payable to City of Springfield and forward to:

Sanitary Services Division Room 210, City Hall 830 Boonville Springfield, MO 65802

CITY OF SPRINGFIELD, MISSC LEPARTMENT OF PUBLIC HEALTH AND WELFARE SE? 3 0 1932 GENERAL SANITATION SECTION

Date September 27, 1982	(Fill in this space if illness occurred)
TimeA.M., 2:00 P.M.	No. persons ill Symptoms
Lab. No. Misc.	
Sealed (X) Unsealed () Official (X) Unofficial ()	Time of ingestion Time of onset of symptoms
Sample submitted by: Name Karen Chandler	
Address 1216 West Nichols	, Missouri
Sample of Ritter Spring	Perishable () Non-perishable ()
	sfactory () Unsatisfactory () Iced ()
Name of Manufacturer (If not same as above)	
Address	, Missouri
Reason for analysis test for flourescin	dye (yellow-green)
TESTS TO BE RUN:	
Chemical & Physical Common Poiso (Eggs & Larvae) (), Insect fragment Starches or cerals (), Filth (),	ns (), Federal Standards (), Insects s (), Sulphites (), Preservatives () Other (), Dye
Bacteriological Total Count (), Coliform (), Oth	
	Sample received by
ABORATORY RESULTS & CONCLUSIONS: Analyst	Au willy Date 9-28-82

(Use back for additional information)

No color after 24 hours extraction

CITY OF SPRINGFIELD INTER-OFFICE MEMORANDUM

ATTENTION OFFILE	DATE	April 16, 1982	
DEPARTMENT			

On April 10, 1982, I received a phone call from Bob Corson about a fish kill in the Sac River. I took conductivity meter readings (the dissolved oxygen meter wasn't working) and samples of the river above the Northwest Treatment Plant, at the Plant discharge, 50 yards below the Plant discharge, the Sac River at old Highway 13, and the Sac River at O Highway. Conductivity meter readings were:

Bridge above N.W. Plant	320
Discharge from Plant	1500
50 yds. below N.W. Plant	1200
Sac at old 13	900
Sac at 0	470

While I was at the Northwest Treatment Plant, John Thomas, an agent for the Missouri Department of Conservation, was also there taking samples. He had counted approximately 170 dead carp (between 12 and 15 inches long) and 9 dead buffalo. It was his opinion that the kill had happened between a week and two weeks before.

cc: Bob Schaefer, P.E., Superintendent of Sanitary Services

Rosen Chandler

Water Pollution Control Inspector

SIGNED Surveillance & Enforcement

m15c.

Look on Ift sede of Ketzigriator

INDUSTRIAL WASTE MONITORING AND ANALYSES REPORT

APR 3 0 1982

Plant N. W. T.E.	ATMENT PLANTS	SICDate	4/10/	82 Time	e ///	5
	E ABOUE PLANTI					
Set up by	Remov	red by CHANDER		Time	e	
	Meter Start					
Seal	Entered in bil					
Sample No. Tin	ne Meter Reading	Test	Date	Analyst	Result	#
1		BOD ₅		225		
2		Total SS		1 4.	•	-
3		pH i		8.04		1
4		Organic Carbon	/			
5		Total Carbon		1		
6		C.O.D.	- 	İ		
7		0-P0 ₄ -P				
8	1	TP 4				
9		NH ₃ -N		04		
10		TKN	-	0.4		
11 .	• • • • • • • • • • • • • • • • • • • •	Phenol				
12		Oil & Grease				
13		Nitrate				
14		Nitrite		İ		
1.5		1 Cd				1
16		Cr				
17	- A	Cu				
18		CN-				
19		Ph	- 1			
20		2n				
21		Ni I				
22		cond 320			***	
23						
24						

PW099

INDUSTRIAL WASTE
MONITORING AND ANALYSES REPORT

APR 3 0 1982

Plant N.W. TRAT	MENT PLANT S	ICDate	110/	82 Time	1:30)
Sampling point PCANT	DISCHAPGE M	ethod CRAR				
Set up by	Remov	ed by CHANDISA		Time	3	
	Meter Start					
	Entered in bil					
Sample No. Time	Meter Reading	Test	Date	Analyst	Result	#
1		BOD ₅		_	26	
2		Total SS			32	
3		рН	-		7.80	
4		Organic Carbon			.,,,,,	12
5		Total Carbon			-	
6		C.O.D.				
7		0-P0 ₄ -P				
8		TP 4				
9		NH ₃ -N			31.6	
10		TKN	ř.		37.6	
11		Phenol				
12		Oil & Grease				17
13		Nitrate			178	
14		Nitrite				
15		Cal				
16		P		İ		
17		Cu		i		
18		ON-	İ			
19		7n				
20		Ph				
21		W:		-		
22						
23						
24						

INDUSTRIAL WASTE MONITORING AND ANALYSES REPORT

. pR 3	0	1985
YLK 2		

	N.PUANT	s:	ICDate_	4/10/8	72_Time	2100	Č
Samplin	g point <u>SD YDS</u>	BEDW DISCHAME	thod CAPP	, ,			
Set up	by	BEDW DECEMBER	ed by OHANOU	9.R	Time	e	
		Meter Start					
Seal		Entered in bill	ing file	by			
Sample	No. Time	Meter Reading	Test	Date	Analyst	Result	#
1			BOD ₅				1
2			Total SS		 	24	-
3			pH /			7,82	
4			Organic Carbon			1,04	
5			Total Carbon				
6			C.O.D. V				
· 7		* ,	0-P0 ₄ -P				
8			TP V	+			
9			NH ₃ -N			222.	-7.4-7
10			TKN	-		23.2	
11			Phenol			- 11-	*2 * * * * *
12			Oil & Grease	- H			
13			Nitrate	1			
14			Nitrite				
15			Cd		li -		
16			CN				v*- •19
17			Cu			117	
18			CD-			- A-1	, F = 1
19			Zn				
20			Ph				
21			Ní				
22		*					
23							
24							

APR 3 0 1982

INDUSTRIAL WASTE MONITORING AND ANALYSES REPORT

Sampling point			fethod GCM)			
Set up by		Remov	red by CHAN	OUR	Time		
low		Meter Start		Meter E	nding		
eal		Entered in bil					
Sample No.	Time	Meter Reading	Test	Date	Analyst	Result	#
1			BOD ₅			.7	
2			Total SS			29	
3			pH C			8.52	
4			Organic Car	bon			
5		A Company	Total Carbon	n low			
6		Company of the Compan	C.O.D.				
. 7			0-P0 ₄ -P	SCHOOL SC			
8		X	TP	CE CO			
9				Call of the last o		1.1	
10			TKN 4				
11			Phenol				
12			Oil & Grease	9			
13			Nitrate				-
14			Nitrite		i		
1.5			Ca		T		
16			CV				95
17	, d' 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		Cu				
18			CD				
19			740				
20			Ph				
21			TW:				
22							
23	 			1	`		
24							

INDUSTRIAL WASTE MONITORING AND ANALYSES REPORT

APR 3 0 1982

Plant SAC	ATO	W 13	SICDate	4/10/8	2_Time	2:3	0
Sampling point	t		Method RAB				
Set up by		Remo	ved by CHANN	LER	Time	2	
			lling file	35.0-0.5-0.0			
Sample No.	Time	Meter Reading	Test	Date	Analvst	Result	#
1			BOD_				
2			Total SS	in the same of the		9	
3			pH			7.77	
4			Organic Carb	on		1. / /	
5			Total Carbon				
6			C.O.D. L		-		
7			0-P0 ₄ -P	_			
8		· ·	TP C				
9			NH ₃ -N			14.3	
. 10			TKN			77.5	
11		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Phenol			1.5	1,127
12			Oil & Grease				:
13			Nitrate				
14			Nitrite				
15			Cel				
16			er		101		
17			Cu				
18			ON	s - 9.5 .co			
19			Zn				
20			1Pb				
21			Ni				
22							
23							
24							

PW099

March 30, 1982

Melvin Simon and Associates P.O. Box 7033 Indianapolis, Indiana 46207

Dear Sirs:

Please find enclosed information you requested. If we can be of further assistance, please don't hesitate to call.

Yours truly,

Robert E. Corson Water Pollution Control Inspector III Surveillance & Enforcement

REC: js

cc: File

W15C.

ATTENTION OF	FILE	DATEJul	y 23, 1981
ATTENTION OF	· · · · · · · · · · · · · · · · · · ·		
DEPARTMENT			

On June 19, 1981, there was a heavy rainstorm in Springfield that caused heavy flooding at the Northwest Treatment Plant. This excess storm water resulted in extensive equipment damage at the plant, causing the Northwest Treatment Plant to be inoperable for several days. Personnel from this office took samples of the Pea Ridge Creek above the plant, at the discharge from the Northwest Treatment Plant, 50 yds. below the plant discharge, the Sac River at the bridge on old Highway 13, the Sac at the bridge on Highway 0, and the Sac at bridge on Highway BB. The samples were taken on June 21 through June 28. The conductivity and dissolved oxygen tests were performed at the sampling site. The results of these tests are attached.

Garen Chandler
Karen Chandler

DATE	TIME	LOCATION	TEMP. (°C)	CONDUC- TIVITY	D.O.	рН	S.S. (mg/l)	B.O.D.5 (mg/l)	FECAL COLIFORM (/100ml)	MISCELLANEOUS
6-20-81		Pea Ridge at Grant							62,000	
		North Plant effluent							544,000	
	4:00 p.m.	Old Hwy. 13 bridge	18.0	230	6.5	7.10		1	27,200	
	4:25 p.m.	Hwy O bridge	20.0	290	6.5	7.05		< 1	23,200	
	5:00 p.m.	Hwy BB bridge	18.0	200	6.1	7.17		1	19,000	
6-21-81	10:25 a.m.	North Plant effluent	20.0	385	3.6	7.16				
	10:20 a.m.	North Plant effluent 50 yds. downstream	18.5	250	7.1	7.16		1	165	
	10:45 a.m.	Old hyw. 13 bridge	20.0	270	6.0	7.31		<1	17,800	
	11:20 a.m.	Hwy. O bridge	19.0	280	6.4	7.35		I	5,373	
	11:30 a.m.	Hwy. BB bridge	19.0	290	7.2	7.51		1	8,950	x 3
6-22-81	12:04 p.m.	Pea Ridge above plant	16.0	280	8.4	7.30		15	6,800	
	12:14 p.m.	North Plant effluent	21.0	300	4.5	7.21	74	25	908,000	
	8:50 a.m.	North Plant effluent 50 yds. downstream	18.0	300	7.4	7.01		9	<1	
	9:10 a.m.	Old hwy. 13 bridge	19.0	280	7.6	7.05		3	200	
	9:32 a.m.	Hwy. O bridge	19.0	290	6.5	7.13		2	2,450	
	10:00 a.m.	Hwy BB bridge	19.5	320	7.4	7.23		7	2,500	
6-23-81	8:43 a.m.	Pea Ridge above North Plant	17.0	225	8.6	7.51		7	940	
	8:51 a.m.	North Plant effluent	21.0	500	4.2	7.32	132	51.0		No coliform bottle
	9:00 a.m.	North Plant effluent 50 yds. downstream	17.5	340	6.4	7.50		7	TNTC	
		Old Hwy. 13 bridge	17.5	290	7.2	7.41		6	244,000	
	9:45 a.m.	Hwy. O bridge	20.0	300	7.4	7.54		3	77,000	
	10:11 a.m.	Hwy. BB bridge	19.0	320	7.8	753		3	26,900	
6-24-81	9:15 a.m.	Pea Ridge above North Plant	19.0	280	7.7			2	400	
	9:00 a.m.	North Plant effluent	19.0	700	3.5	7.22	27	3	2,000	

DATE	TIME	LOCATION	TEMP. (°C)	CONDUC- TIVITY	D.O.	рН	S.S. (mg/l)	B.O.D. ₅ (mg/1)	FECAL COLIFORM (/100ml)	MISCELLANEOUS
6-24-81	9:30 a.m.	North Plant effluent 50 yds. downstream	20.0	460	6.2	7.43		2	<100	
	10:00 a.m.	Old Hwy. 13 bridge	20.0	360	6.0	7.51		2	84,000	
	10:30 a.m.	Hwy. O bridge	20.0	340	6.4	7.68		3	16,250	
	10:45 a.m.	Hwy. BB Bridge	20.0	340	6.7	7.88		4	300	
6-25-81	8:20 a.m.	Pea Ridge above North Plant	19.5	295	8.2	7.68		<1	637	
	8:25 a.m.	North Plant effluent	18.5	650	3.2	7.19	69	3	< 4	
	8:35 a.m.	North Plant effluent 50 yds. downstream	19.0	390	6.4	7.45		1	<10	
	8:45 a.m.	Old Hwy. 13 bridge	19.5	340	6.6	7.19		2	1,000	
	9:02 a.m.	Hwy. O bridge	18.5	345	6.7	7.47		4	1,750	
	9:30 a.m.	Hwy. BB bridge	18.5	360	7.0	7.56		1	720	
6-26-81	9:45 a.m.	Pea Ridge above North Plant	18.5	325	8.6	7.59		< 1	3,560	
•	9:50 a.m.	North Plant effluent	20.0	700	3.2	7.24	17	.3	176	
	10:00 a.m.	North Plant effluent 50 yds. downstream	19.0	430	7.1	7.42		2	388	
	9:25 a.m.	Old Hwy. 13 bridge	19.0	370	6.7	7.41		<u> </u>	125	
	9:05 a.m.	Hwy. O bridge	19.0	370	6.8	7.56		1	310	
	8:45 a.m.	Hwy. BB bridge	20.0	350	7.8	7.78		<1	365	
6-27-81	8:55 a.m.	Pea Ridge above North Plant	17.5	325	7.5	7.48		< 1	600	
	9:00 a.m.	North Plant effluent	19.5	750	4.5	7.17	23	7	106	
	9:15 a.m.	North Plant effluent 50 yds. downstream	18.5	450	6.2	7.28		1	. 60	
	8:40 a.m.	Old Hwy. 13 bridge	17.5	400	1.0	7.28		$\langle 1$	1,810	
	8:25 a.m.	Hwy. O bridge	19.0	360	6.1	7.41		23	480	

*

Ť

	DATE	TIME	LOCATION	TEMP. (°C)	CONDUC- TIVITY	D.O.	рН	S.S. (mg/l)	B.O.D. ₅ (mg/1)	FECAL COLIFORM (/100ml)	MISCELLANEOUS
ì	6-27-81	8:00 a.m.	Hwy. BB bridge	20.0	370	7.0	7.71		<1	350	
	6-28-81		Pea Ridge above North Plant	18.0	340	8.4	7.62		_1	175	*
			North Plant effluent	19.0	600	7.0	7.37		2	167	
			North Plant effluent 50 yds. downstream	19.0	480	8.0	7.33		3	52	
			Old Hwy. 13 bridge	19.0	425	5.5	7.46		2	103	9
			Hwy. O bridge	20.0	380	5.7	7.47		1	345	
			Hwy. BB bridge	19.0	370	7.0	7.68		<1	395	li v

ATTENTION OF	FILE	DATE	2-9-81	•
DEPARTMENT				

RE: Pressure line break at the Southeast Lift Station

Sometime Friday morning, January 30, 1981, the 16" pressure line from the Southeast Lift Station broke. This occurred approximately $\frac{1}{2}$ mile up from the lift station, just west of Lone Pine Street. Raw sewage was bypassed from the lift station to Galloway Creek for 72 hours. Rate of discharge looked to be 200 gallons a minute for a total of 864,000 gallons. The discharge was chlorinated.

Eugene Pabst Water Pollution Control Inspector III Surveillance & Enforcement

EP:js

MISCS

SIGNED Lee

ATTENTION OF Robert R. Schaefer, P.E.	DATE September 3, 1980
DEPARTMENT Sanitary Services	

Re: Camera stolen from P2-24

At approximately 8:00 A.M. it was noticed that someone had apparently broken into P2-24 over the Labor Day weekend. There was no damage to the vehicle, but the contents of the glove compartment were spread across the passenger side of the front seat. After checking all the equipment in the vehicle, the only thing that was missing was the Kodak Packet Instamatic Camera, valued at approximately \$30.00.

misc.

P2-24 is always parked inside the garage behind the sewer maintenance building when it is not in use, and is locked.

Gene Pabst

June 30, 1980

Shaver Trucking Inc. 3600 Highway 68 West Springdale, Ark. 72764

Dear Sir:

Please be advised that on Tuesday, June 17, 1980, personnel from the City of Springfield Water Pollution Control Section, Surveillance and Enforcement Branch, responded to a diesel fuel spill within the corporate limits of the City. The spill occurred when Mr. Phil Reid, a driver for your company, everturned truck number 105 in a ditch, spilling approximately 50 gallons of diesel fuel into the ditch. This resulted in City personnel having to remove the diesel fuel from the ditch.

The ordinances of the City provide for the recovery of the costs involved in the abatement of a violation under emergency conditions. Payment of those costs should be made to the City of Springfield, Sanitary Services Department and sent to:

City of Springfield City Hall, Room 210 830 Boonville Springfield, Mo. 65802 Attention: Mr. Robert Schaefer

Attached to this letter please find a detailed explanation of the costs involved and a copy of Chapter 30 of the Springfield City Code. If you have any questions, please don't hesitate to calll

Yours truly,

Karen A. Chandler Water Pollution Control Inspector II Surveillance and Enforcement

cc: Robert R. Schaefer, P. E., Superintendent of Sanitary Services John R. Nixon, Missouri Department of Natural Resources Doug Frame, OIl and Hazardous Materials Spills, E. P. A. Rred Fantauzzi, Director of Finance

ADDRESS UNKNOWN

Kasen,

Charlene Called and Said

That hey received a Check

from Schaffer mucking Co.

Prying for the Chanep of

Their Spill. The Cleck No.

17458 and the amount
is 82.47. if you want to make

note of this in the fell

So

PERSONNEL COSTS:	SURVEILLANCE AND ENFORCEMENT		
June 17, 1980	Burden Rate	Time at Site	Cost
K. Chandler R. Corson R. Lyman S. Short	9.24 12.96 12.96 10.54	2 hours 2 hours 1 hour 1 hour	\$18.48 25.92 12.96 10.54
PERSONNEL COSTS:	SEWER MAINTENANCE		
June 17, 1980	Burden Rate	Time at Site	Cost
W. Duncan	9.15	.5 hours	4.57
EQUIPMENT COST			
June 17, 1980			
Dump Truck Miles 4 WD Truck Miles " " "	(T2-47)- 6 at .50/mile (P2-22)-10 at .35/mile (P2-15)-10 at .35/mile		3.00 3.50 3.50

Site Cost				
ours \$18.4 ours 25.9 our 12.9 our 10.5	8			
ours 25.9	2			
our 12.9	6			
our 10.5	4			
Site Cost				
5030				
ours 4.5	7			
2 0				
3.00 3.50	3			
3.50	2			
	- 2			
TOTAL COST \$82.47	7			
402.11	1			

April 30, 1980

Dusty Rhodes Rhodes Concrete Products 3938 S. Lone Pine Springfield, Missouri 65804

Dear Mr. Rhodes:

I have reviewed the sketch which you have submitted for construction of a sampling pit which the City routinely requires for industries and other businesses. This letter is to indicate my approval of this sampling pit with the following stipulations:

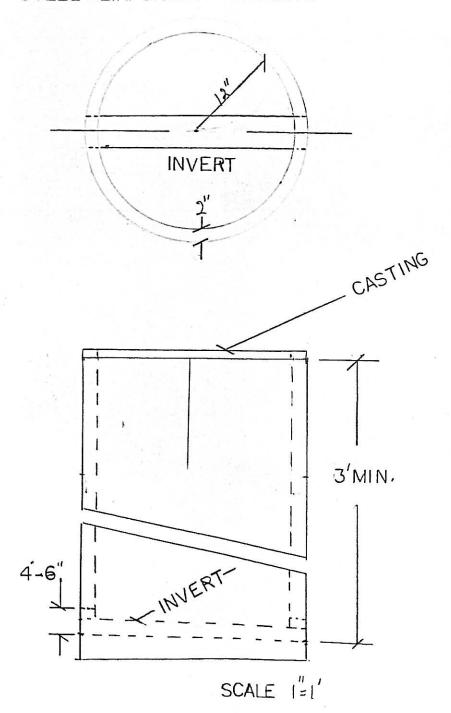
- 1. All joints must be properly sealed with RAM NEK in accordance with the City's manhole requirements.
- 2. Although a 2" wall thickness on the sampling pit should be sufficient in most cases, a thicker wall may be required in traffic areas.
- 3. The manhole ring must be properly attached to the sampling pit such that surface water is excluded at this connection.

I have no real idea of how many of the sampling pits will be required in the City, but the new Pretreatment Regulations, which should go into effect January 1, 1981, will require some of these to be installed at existing industries. These sampling pits will also be required at any new industry or commercial business which discharges waste which is significantly different than domestic type dewage.

I would be interested in seeing a sketch on the grease trap which your company is producing. If any further information is needed, please let me know.

Very truly yours,

Robert R. Schaefer, P.E.


Superintendent of Sanitary Services

RRS:cc

cc: Water Pollution Control

SAMPLING PIT

STEEL REINFORCED CONCRETE

February 19, 1980

Department of Public Works 8500 Santa Fe Drive Overland Park, Kansas 66212

Dear Sirs:

The Water Pollution Control Section of the City of Springfield, Missouri is researching ordinances dealing with the testing of underground storage vessels.

Springfield has experienced numerous indidents of gasoline contaminating groundwater, infiltrating sanitary and storm sewers, and creating hazardous conditions in buildings, the most recent case being the abandonment of a grade school for the remainder of the current school year.

This office has been advised that Overland Park's ordinance has been effective and would appreciate a copy of your ordinance and any information that might be helpful.

If you have any questions please donnot hesitate to contact this office.

Yours truly,

Stephen Short Water Pollution Control Inspector II Surveillance and Enforcement

SDS: js

cc: William Hayes, Environmental Geologist

misc.

February 19, 1980

Mr. Richard J. Larson Director of Public Works City of Champaign 1018 West Charles Street Champaign, Illinois 61820

Dear Mr. Larson:

The Water Pollution Control Section of the City of Springfield, Missouri is researching ordinances dealing with the testing of underground storage vessels.

Springfield has experienced numerous incidents of gasomine contaminating ground-water, infiltrating sanitary and storm sewers, and creating hazardous conditions in buildings, the most recent case being the abandonment of a grade school for the remainder of the current school year.

This office has been advised that Champaign's ordinance has been effective and would appreciate a copy of your ordinance and any information that might be helpfull

If you have any questions please do not hesitate to contact this office.

Yours truly,

Stephen Short Water Pollution Control Inspector II Surveillance and Enforcement

SDS:js

cc: William Hayes, Environmental Geologist

February 19, 1980

Mr. George H. Fairfield Director of Public Works City of Kearney P. O. Box 489 Kearney, Nebraska 68847

Dear Mr. Fairfield:

The Water Pollution Control Section of the City of Springfield, Missouri is researching ordinances dealing with the testing of underground storage vessels.

Springfield has experienced numerous incidents of gasoline contaminating ground-water, infiltrating sanitary and storm sewers, and creating hazardous conditions in buildings, the most recent case being the abandonment of a grade school for the remainder of the current school year.

This office has been advised that Kearney's ordinance has been effective and would appreciate a copy of your ordinance and any information that might be helpful.

If you have any questions please do not hesitate to contact this office.

Yours truly,

Stephen Short
Water Pollution Control Inspector II
Surveillance and Enforcement

SDS:ja

cc: William Hayes, Environmental Geologist

January 29, 1980

Mr. Bob Bashor: Administrative Assistant to the Director of Public Works 303 East Third Street Joplin, Missouri 64801

Dear Mr. Bashor:

Please find enclosed a copy of the City of Springfield Industrial Waste Questionnaire. This questionnaire is a modified form of the questionnaire as provided by the E.P.A. I hope this will help you in your development of Joplin's Pretreatment Program

If we can be of further assistance please do not hesitate to contact us. Our address is:

City of Springfield Water Pollution Control 1216 West Nichols Springfield, Missouri 65804 Telephone: (417) 865-1611, Ext. 120

Yours truly,

Robert Corson Water Pollution Control Inspector III Surveillance and Enforcement

RC:js

January 22, 1980

Mr. Jack Snead Snead Safety Sales 507 Hazel Road Buckner, Missouri 64016

Dear Mr. Snead:

This office purchased a Scott Air-Pak II from your company. Our unit S/N 97-100135, 800212-00 appears to be subject to the Scott recall.

Would you please send the replacement parts to:

Water Pollution Control 1216 West Nichols Springfield, Missouri 65802

If we can be of any assistance, please feel free to call.

Yours truly,

Stephen Short Water Pollution Control Inspector II Surveillance and Enforcement

SDS:js

CITY OF SPRINGFIELD, MISSOURI SOUTHWEST WASTEWATER TREATMENT PLANT LABORATORY ANALYSIS REQUEST

IECK AN	MALYSIS DESIRED:			
<u></u>	SUSPENDED SOLIDS_	30	mg/1	Date: 6/20
	BOD ₅	_mg/1		Date: 6/20
	COD	_mg/1		Date:
V	рн <i>9.0</i> 2			Date: 6/20
	NH3-N	_mg/1		Date:
	PO ₄ ORTHO	_mg/1		Date:
	CARBON C _T	_ c _I	c ₀	Date:
	TOXICITY			Date:
	HEAVY METALS(SPEC	IFY):		
				Date:
	OTHER(SPECIFY):			
				Date:

C. U. Mice. Southwest Power Plant

ATTENTION OF Memo to File	DATE May 18, 1979	
DEPARTMENT		

On Friday, May 17, 1979 the files for both W & S Farms, Inc. and Ellex Transportation Company were turned over to the Legal Department for prosecution, due to non-payment of bills for spill cleanup.

SIGNED Sene Falot

Gene Pabst

To Gene Date 6-26-76Time 4:	00 By
While You	Were Out
Mr	
of	
☐ Telephoned☐ Will Call Again☐ Please Call Him	☐ Called to See You ☐ Wants to See You ☐ Rush!
Phone	
Message We have receive of #203.93 from for the spill	ed cleck #000215 Eller Irans. out at Set-n. So.

INTER-OFFICE ME/MOR	DATE May 18, 1979
DEPARTMENT	S Farms, Inc. and Ellex Transpor-

On Friday, May 17, 1979 the files for both W & S Farms, Inc. and Ellex Transportation Company were turned over to the Legal Department for prosecution, due to non-payment of bills for spill cleanup.

SIGNED Gene Pabst.

SPRINGFIELD, MO., Opril 25, 1979

Received from Theman's Fund In Conspanied

Dollars

Dynal Full Chance Character Transport Helwing

Lynner June Colors

Frence

Frence

Glain# 606043

Jan Dodont

April 23, 1979

Alexander and Alexander Ms. Jan Brace, Claims Dept. Fifteen West Sixth Street Tulsa, Oklahoma 74119

Dear Ms. Brace:

On February 26, 1979, the City of Springfield sent an itemized bill to Mr. Bob Wiruth, President of Transportation Delivery Service, Tulsa, Oklahoma for the cleanup of a diesel spill that occurred within the corporate limits of the City. This office received a letter from Mr. Wiruth dated March 2, 1979, stating that the matter had been turned over to your company. Enclosed please find a copy of all correspondence between this office and the office of Transportation Delivery Service.

Some time has passed since this matter was turned over to your company. And as of the writing of this letter the City has not received payment for these expenses. Please be advised that this matter will be turned over to the City Attorney for appropriate action if this office does not receive payment in full within fifteen (15) days from the date of this letter.

If you have any questions, please feel free to call.

Yours truly,

Gene Pabst Water Pollution Control Inspector III Surveillance and Enforcement

GP:pg

Enclosures

cc: Mr. Robert R. Schaefer, Superintendent of Sanitary Services Mr. Howard Wright, City Attorney

ses.			
f 7			
f 7			
f 7			
f y	Town		
f y			
f 7			
f y			
f y			
f 7			
f 7			
f 7			
f 7			
f 7			
f 7			
f 7			
es.			
es.			
es.	•		
ses.	f		
ses.	y		
	en en		
	Andrew (

Springfield Baily Neug . Thursday, Jam 25, 1979

Chemical spill cleanup method in derailment violates state law

Missouri Pacific freight train from the pit. derailed near Sturgeon Jan. Although it might not be a \$1,000 a day for failure to Cary Bechtolt, was quoted 11 is not being disposed of threat to surface water, any comply. properly, a state official said material left behind in the State officials said they the waste would be placed in Wednesday.

sources said the company hired, Western Environmental Inc. of Portland, Ore., has been dumping the material in an open pit on land leased near the spill site.

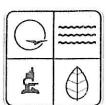
Robert Robinson said the company apparently plans to neutralize the material there, then move the remaining liquid and contaminated soil to a permanent site.

Robinson said the company did not have authorization to place the material in the pit. He said state law requires that such material be placed in a permanent site. and that such a pit would not be considered permanent.

He expressed concern the company could change plans and not treat the material as promised. He said the department is concerned about a federal law which says that if there is no danger to surface water, the Environmen-

STURGEON (AP) - A tal Protection Agency has no remove all the hazardous Wright City or burned in an toxic chemical spilled when a authority to move the waste material from the pit. State incinerator.

Department of Natural Re- Western 30 days in which to a waste disposal site at cials.


law calls for possible fines of A Western spokesman.

pit could be a threat to had been told the material the drums and buried at The chief of hazardous ground water, Robinson said. would be loaded into 55 gal- Wright City or some other waste management for the The DNR order would give lon drums and transported to site acceptable to state offi-

the day of the spill saying

misc.

3.100 Greene County

July 17, 1978

Mr. Steven Brady, P.E. Anderson Engineering, Inc. 730 North Benton Avenue Springfield, MO 65802

RE: Hadley Place Subdivision
Phase One

Dear Sir:

The plan for wastewater disposal in the above referenced project has been reviewed and the following comments and recommendations are made for your consideration.

- In general, the proposed use of a central sewer system to serve this project is in accordance with the subdivision regulations; however, the report needs to show both the need and the feasibility for the interim use of on-site waste disposal.
- 2. The report must indicate the extent of the hardpan found in test pit I so that the developer will be aware of the area in which he must take special precautions.
- 3. Even if the fragipan can be successfully penetrated, it is unlikely that the shallow depth to the penetrated bedrock will provide adequate protection of the groundwater. When evaluating a site as to suitability for the use of septic tank-lateral fields the ability of the soil to absorb and filter the wastewater must be considered not just its percolation rate.
- 4. A report from the Missouri Geological Survey was not included with the submittal.
- 5. Based on the normal permeability for Pembroke soils, is it feasible to place a traditional septic tank-lateral field on the small lots shown on the plat.
- 6. The plan for wastewater disposal must be approved prior to the construction of any dwelling in a subdivision.

Further consideration will be given to approval of the report upon receipt of your response to the above comments and recommendations.

Yours truly, Kinther Stephen S. Kinther

Environmental Specialist II Springfield Regional Office

Joseph P. Teasdale Governor

Carolyn Ashford Director

Springfield Regional Office

SSK/cg

C.C. Mr. Herbert Hadley
City of Springfield's Sanitary Services Department

Misc.

ATTENTION OF	Memo to life	DATE APITI 20, 1970
DEPARTMENT	Water Pollution Control	

9			
		PRINGFIELD MEMORANDUM	
TTENTION OF Memo to fi	le ution Control	DĄTE	April 26, 1978
the above reference property in Spring operation. It wo	n inquiry by telephon ced company. (see at gfield this week with uld involve plating; harge volume of as mu	tached letter) They the idea of locatin predominantly Nickel	r are looking at ng a manufacturing
CHC REC EDP C. D.P. SDS 5.D.S. JRL PRJ JDS DRD DED			
	me Ci	SIGNED Harry C	ZTISWEII

April 26, 1978

Mr. Floyd Preslan Snap-On Tools 2801 80th Street Kenosha, Wisconsin 53140

Dear Mr. Preslan:

Thank you for your recent telephone call in regard to the City's Sewer Use Ordinance. As per our discussion, please find the same enclosed. Additionally, please find an additional page entitled Appendix 4, which was published some years ago as an appendix to the State's Effluent Guidelines. It was not republished with the printing of the Effluent Regulations, so as we discussed, it is still in the posture of a guideline. It is however, the best guidance document we have in cases where pretreatment regulations have not been promulgated for the individual point source category in question.

If we may be of further assistance or your review of the material brings to mind additional questions, please do not hesitate to call on us.

Yours truly,

Charles H. Criswell Associate Environmental Engineer Chief, Water Pollution Control

CHC:pg

Enclosures: (2)

cc: Mr. John R. Nixon, Regional Administrator, Mo. Department of Natural Resources Public Works File

bcc: Surveillance and Enforcement File

MIS C

April 26, 1978

Mr. Burns Derrough Bell Building Systems Inc. 2660 South Glenstone Suite 109A Springfield, Missouri 65804

Res Dameron Color Lab

Dear Mr. Derrough:

After reviewing the material supplied by the Eastman Kodak Company in regard to the above reference, we are no less convinced, and in fact reinforced in our decision to require an access for periodic sampling and analysis. The range of values for biochemical oxygen demand, a significant portion of which is well above the City's domestic limits, is enough to prompt that decision by itself, regardless of whether or not heavy metal ions and/or other toxics are present, which seems to be a probability.

We employ the use of automatic samplers in our industrial monitoring program, which require a minimum vertical distance of twenty-four (24) inches. A diameter of twenty-four (24) inches is sufficient if there is no obstruction greater than two (2) inches. (e.g., manhole steps) It is our suggestion that a standard manhole be built giving access to the private building sewer prior to the waste entering and being mixed in the City's collection system. If you need, you may obtain specifications from the Engineering Division of Public Works, or from Mr. Robert R. Schaefer, the Superintendent of Sanitary Services.

Alternatively, you may at this time, simply provide a point of access where a grab sample may be taken. Our automatic samplers provide sampling over a long period of time, usually twenty-four hours, and we then perform the analysis on a composite sample. We feel that this method is much more accurate as a picture of the typical waste stream, and in fact a good deal fairer to the industry. We can take grab samples however, with as small an access as a clean-out plug, and you may provide the same, with full knowledge that in the case that grab samples would indicate a level of biochemical oxygen demand or suspended solids above domestic limits, or the presence of constituents not amenable to treatment in a biological system in amounts deemed by the City to be detrimental, that the City can and will require the construction of a sampling access as previously described at some future date.

MISCI Domopon Colon LADS

7 5	
05	

Mr. Burns Derrough Page 2 April 26, 1978

If we may be of further assistance or can answer any questions, please do not hesitate to call.

Yours truly,

Charles H. Criswell Associate Environmental Engineer Chief, Water Pollution Control

CHC:pg

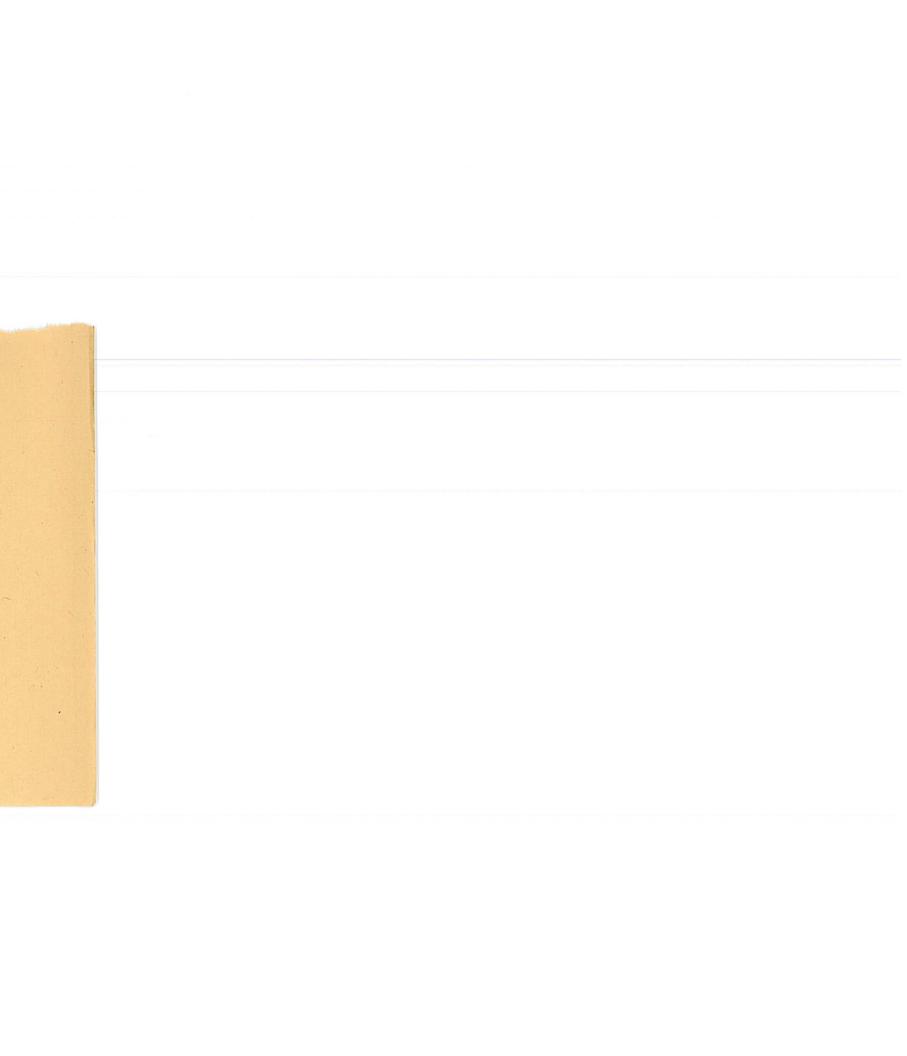
cc: Mr. Roy Dameron, Dameron Color Lab

Mr. Franklyn A. Ericson, Eastman Kodak Company

Mr. Robert R. Schaefer, Superintendent of Sanitary Services

Mr. J. Randall Lyman, Surveillance & Enforcement

Mr. John R. Nixon, Regional Administrator, Mo. Department of Natural Resources Public Works File Gold Crown Egg Co. No evidence of a discharge as such. There is evidence of runoff from around solid waste container areas somewhat.

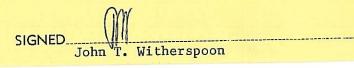

Hardy's Truck Parts No evidence of actual discharge.

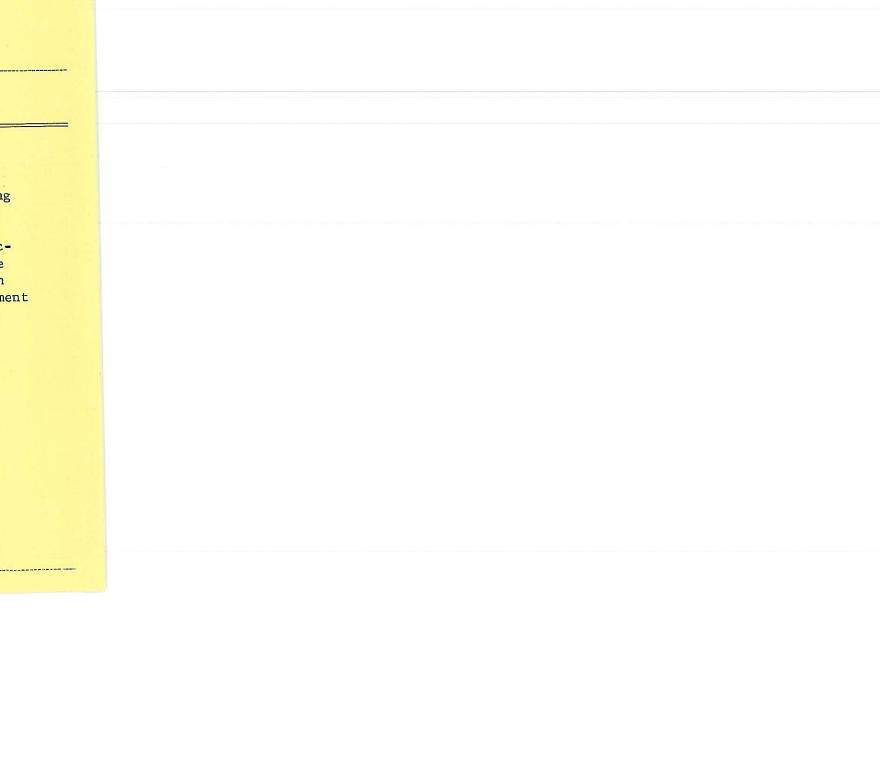
Davis Automotive Discharge remainds and pooling is occuring behind building.

Harker Paint Company No discharge to Jordan Creek.

R. T. French Lake in front is used as fire protection. Overflow would go north across I-44 in the direction of Valley Water Mill. No discharge into lake is vistable.

M136.


ARTMENT Memo To File	DATE Sept. 1911
Gene Pabst and I talked to Warren the material running off his lot cooling systems on his lot. He w on his property.	Maytyrs of Warrens Radiator Repair. He stated was not oil. He was advised to discontinue draining was also advised to keep hhe radiator wash and painting run66f
? ADDRESS	SIGNEDStephen Short


TTENTION OF Mr. Ro	bert Schaefer	DATE.	August 10,	1977
DEPARTMENTSanita	ry Services			
Treatment Pla	e D.O. readings of the I ant. All readings were 1977, which was taken by	taken by this office	e except for	the reading
Sunday -	July 31, 1977 1:00	- 4:00 p.m.		
A) B)	100 yards above the 03 Approximately 20 carp Old Highway 13 Bridge Old Highway 13 Landfi	ld Highway 13 Bridge in stress 8 - 9 ppm.		
Monday •	- August 1, 1977			
A) B) C)	Old Highway 13 Bridge Farm Road 129 - 5.4 - Farm Road 117 - 7.0 Highway 0 - 6.6 ppm.	7.6 ppm. (2:30 p. ppm. (2:50 p.m.)	.m.) m.)	
Tuesday	- August 2, 1977			
A) B) C)	Old Highway 13 Bridge Farm Road 129 - 6.0 p Farm Road 117 - 8.0 p Highway 0 - 6.2 ppm.	pm. (2:30 p.m.) pm. (2:45 p.m.)	•m•)	
Wednesd	ay - August 3, 1977			
A)	Old Highway 13 Bridge	- 5.8 ppm. (2:40 p	o.m.)	
B)	Farm Road 129 - 6.9 p	pm. (2:50 p.m.)		
D)	Farm Road 117 - 9.7 p Highway 0 - 7.7 ppm. (3:05 p.m.)	SIGNED	Pabst	

ATTENTION OF Memo to file	DATE August 2, 1977
DEPARTMENT	

Re: Discharge from old PFA store at 218 S. Glenstone

Bob Corson and I received a call from the Street Department on 8-1-77 concerning the above discharge. We checked and found a pipe emptying into the ditch from a sump pump inside the building. We went into the building and found the sump pit in the loading area. It ordinarily pumps only storm water, but this particular discharge was stemming from a leak in the automatic sprinkler system. The leak in the sprinkler was flowing into a trench drain in the loading area which is drained by the sump. We advised personnel there to contact the Fire Department about the leaking sprinkler system.

Robert R. Schaefer ATTENTION OF.

DATE July 11, 1977

Superintendent of Sanitary Services DEPARTMENT

> Gary Pendergrass and I visited some of our high volume and high strength users concerning the diversion at the Southwest Plant due to construction and problems related thereto. The findings of our investigation is as follows:

Mid-America Dairymen - 10:25 - 10:40

Larry Boyd - Plant Manager

Put new cooling tower in operation last week, should cut flow. July 4 was end of peak production period. Indicated they would try and keep flow down as much as possible.

Syntex Agribusiness - 10:50 - 11:05

Larry Wakefield - Plant Manager

Will start spreading out discharge over 24 hour period instead of 6L00 a.m. to 6:00 p.m. Indicated they will cut back flow and allow lagoon to fill up as much as possible. We need to contact Syntex as soon as flow is going through plant so they can go back on pumping regular pumping schedule.

Kraft Foods - 11:30 - 11:45

Harold Mayo - Plant Manager

Indicated Kraft would do as much as possible to reduce loading such as controlling spillage and keeping drain strainers clean. Major sanitation shift will be Friday, 7-15-77, midnight to Saturday, 7-16-77, at 8:00 a.m.

Kraft Industrial - 1:15 - 1:30

Carl Ledgerwood - Quality Control Manager

Industrial plant has been down for the last two weeks. They are drying no cheese, only condensing. No major cleanup is expected for another 2-3 weeks.

R. T. French - 1:45 - 2:10

John R. Neff - Manager, Manufacturing Engineering

Indicated production is down and all they are presently doing is shipping. Plan to start up production Tuesday, 7-19-77. Only flow should be normal domestic flow.

Water Pollution Control Inspector III

Surveillance & Enforcement

Buletin

Institute of Industrial Launderers 1730 M Street Northwest Suite 613 Washington DC 20036 (202) 296-6744

No. 121

Committee

Production Committee

June 1, 1977

To: All Active Members All Suppliers

IIL ENTERS COMMENTS ON WASTEWATER PRETREATMENT STANDARDS FOR EXISTING AND NEW SOURCES OF POLLUTION (40 CFR 403)

Our Bulletin No. 100, April 19, 1977, summarized a set of proposed regulations by the Environmental Protection Agency (EPA) covering pretreatment standards for wastewater. These regulations included four different options and a number of elements that would be common to all options. This bulletin also indicated the "Auto and Other Laundries" (AOL) industry, which includes industrial laundries, was cited in a court decree of June, 1976, as one of twenty-one industries to be regulated with their own Federal Standards unless an evaluation of the industry proved this was not necessary.

The IIL monitored some of the hearings held throughout the country on the proposed regulations, but did not offer testimony at those times. A substantial written set of comments was presented to the EPA on this subject prior to the deadline of May 18, 1977.

In brief, the IIL presented reasons why the AOL should be eliminated as an industry with its own set of Federal Standards for wastewater discharge in Public Owned Treatment Works (POTW), and recommended the selection of Option III with a minor addition.

The reasons for deleting AOL from those industries having their own Federal Standards are:

- Most of the flow (80-90%) of the wastewater discharge going into POTW's attributed to laundries (5-10% of the total) comes from laundries other than those in the AOL category, such as home washers, private institutions, etc. The flow from AOL is less than 1% of the total;
- 2. The large majority of the 30,000 establishments attributed to AOL are very small and have insignificant input. Even though this is over half of the 55,000 establishments in the twenty-one industries listed, this large number has little significance on the total environmental wastewater impact;

PRETREAMENT: LANDRIES

Bulletin No. May Page 2

- There is adequate provision in the general standards that apply to all options to adequately regulate the few establishments creating problems with an individual POTW;
- The AOL industry meets two sets of criteria that provide for deletion of an industry;
- 5. The AOL category is mentioned in the Proposed Regulations Document as a likely candidate for deletion.

In addition, it was pointed out the AOL category is a source of energy conservation, water conservation and employment. All of these are vital to the solution of current problems facing our nation.

Reasons for choosing Option III are:

- Standards will be set by local POTW's according to their needs, with the exception of Federal Standards for major pollutants;
- 2. Variances could be negotiated locally if required;
- 3. Enforcement would be local.

It was felt better understanding of an individual problem with all the social, economic and environmental factors involved would result from negotiations on the local level. Other options included varying degrees of central regulation.

The need for mass limitation control, based on type and amount of soil handled, was also recommended as opposed to concentration limitations which merely reflect pollutant concentration in the wastewater. Acceptance of this would encourage water re-use, concentration of pollutants and also differentiate between lightly and heavily soiled work.

We wish to thank all members who responded to our request for aid in formulating our reply to the EPA.

Glenn K. Reeves, Chairman Federal Environmental Regulations Subcommittee

Sol Schwartz, Chairman Production Committee

PRETERSTMENT: MINDRIES

Mr Robert W. Pappen -t
Enovemental Enquee State
Solid Waste Management Program
Solid Waste Management of Natural Resources

Dea

At

cc

Missonia Department of Nathan 12000. 2.0. Box 1368 — 2010 Missonia Bird. Tefferson City, Missonia 65101	
ar Mr. Pappenfort:	
have redieved and read with some interest your letter of January 27, 1977. reviewing many notes relating to this incident, I find one of your comments that letter in direct contradiction to your earlier statements made in a lephone call January 5, 1977, at approximately 8:45 A.M., and those of the ogram director leter that same day. It is difficult at best to adequately ndle a situation such as has transpired here recently without the added rden of conflicting advice.	
advised that the project lacks only the actual shipment of the twenty-two rreds of contaminated material, for it to be completed. The Citlof Spring-eld has acted in good faith in an attempt to avert a major detriment both to e metropolitan water supply and to the environment in general. We have taken ecautions in handling and disposal based on our best judgement in accordance th laboratyty analyses, as you originally indicated we should. We are now	
mewhat dismayed that the Missouri Department of Natural Resources is apparently ss than satisfied with our efforts. Attached to this letter, please find	
detailed chronological report outlining the significant aspects of the pro-	
ct.	
believe the report to be self-explanatory and composed of all facts perti-	
nt to the matter. If we can answer any questions, please do not hesitate to	
Yours truly,	
ASEChief, WQS	
CHIEL, WQS	
tachment:	
: 最級機能機能 Snider	
電視電視器 Bengsch を必い点	
Durchow - 5 Missim williams or memohan in Plank	
Nixon	
Eigner Robinson	
Anderson & metagfulni	
(over)	
MiSC.	
V	

ATTENTION	OF_Mr.	Robert	R. Scha	efer,	P.E.
-----------	--------	--------	---------	-------	------

DATE	Assaulat .	1 1	076
DATE	August :	LI. L	9/0

DEPARTMENT Sanitary Services

Re: Briefing Paper, North American Site Project
Knight Wegenstein Limited
July, 1976

Bob,

I appreciate the opportunity to review the above referenced proposal and comment regarding your conveyance of specific questions. First, as to cost for collection and treatment:

Initially- 100 gallons/day (about 4 ccf/month) domestic 65 000 gallons/mo (about 87 ccf/month) industrial 91 ccf/month - \$25.62*

Expand to- 1 350 gallons/day (about 54 ccf/month) domestic 1 100 000 gallons/mo (about 1471 ccf/month) industrial 1525 ccf/month- \$412.80*

Suspended Solids @ 50 ppm = 0.3 lbs/ccf which is well below the excess strength limit of 1.9 lbs/ccf. No surcharge would be anticipated.

*Note that costs reflect billing charges as authorized in G.O. No. 2555, which do not take into account increased operational costs anticipated with the completion of the expanded Southwest Plant Facility.

As to treatability, incompatible constituents:

The exhibit is unclear as to whether the concentrations of Zinc and Iron are ranges of expected values, or initial and expanded concentrations. Assuming they are ranges:

Total Zn would be 6 - 12 ppm or .0375-.076 lbs/ccf Total Zn loading, 3.26 - 6.53 lbs/day initially 55.16 -110.33 lbs/day ultimately

The maximum concentration generally considered acceptable for discharge to municipal systems, with respect to zinc, is 2.0 mg/l (ppm).

If, as the exhibit show, the two fractions of zinc (solids and solubles) are separate, the solubles could probably be safely discharged. The solids would then have to be dried and landfilled, or disposed of in an approved hazardous waste disposal facility.

If they are not separated, some means of pretreatment <u>may</u> be required. The word may is emphasized for good cause. As you are aware, the U.S. Environmental Protection Agency has published, <u>Effluent Limitations Guidelines...and Standards of Performance and Pretreatment Standards...</u> for some 50 or more Point Source Categories. The degree of effluent reduction attainable by the application of best practicable control technology currently available (and the degree to which Federal Law would require a municipality to limit acceptance of a waste) is dependent in large part to the specific Standard Industrial Classification of the particular industry in question.

SI	GNED	

ATTENTION OF	DATE
DEPARTMENT	

In other words, we may want to require pretreatment of zinc, or we may be forced to require it.

By the same calculations used above for zinc, the total Iron loading can be computed:

Total Fe would be 4 - 12 ppm or .025 - .075 lbs/ccf Total Fe loading, 2.18 - 6.53 lbs/day initially 36.78 - 110.33 lbs/day ultimately

The maximum concentration generally considered acceptable for discharge to municipal systems, with respect to iron, is 15.0 mg/l (ppm).

The concentration as shown in the exhibit appears to be within the concentration limits we would probably allow. However, due again to Federally imposed pretreatment standards, the discussion pertaining to zinc may also apply, although it is less likely.

Phosphorous: P205 appears to be the meta form of phosphate. The concentration does not appear to be a source for concern.

The pH range of 7 to 9 composes favorably with the accepted range of 5.5 to 9.0 in Chapter 30, Sec. 30-9 (f).

It is of passing interest to note that the above pH range is the ideal range for precipitation of zinc as the metal hydroxide as zinc is amphoteric (i.e., will redissolve at either higher or lower pH) This may be an indication that a history of pretreatment has already taken place, and may explain why the metals are listed as solubles and solids.

Add tionally, the ultimate flow (about 1525 ccf/mpnth) represents about 0.35 percent of the total flow loading on the system. The Industrial Cost Recovery System will require certain amounts, depending upon location (North or South Basin) and find program costs to be determined for the South Basin projects.

:mh

cc: Surveillance and Enforcement File

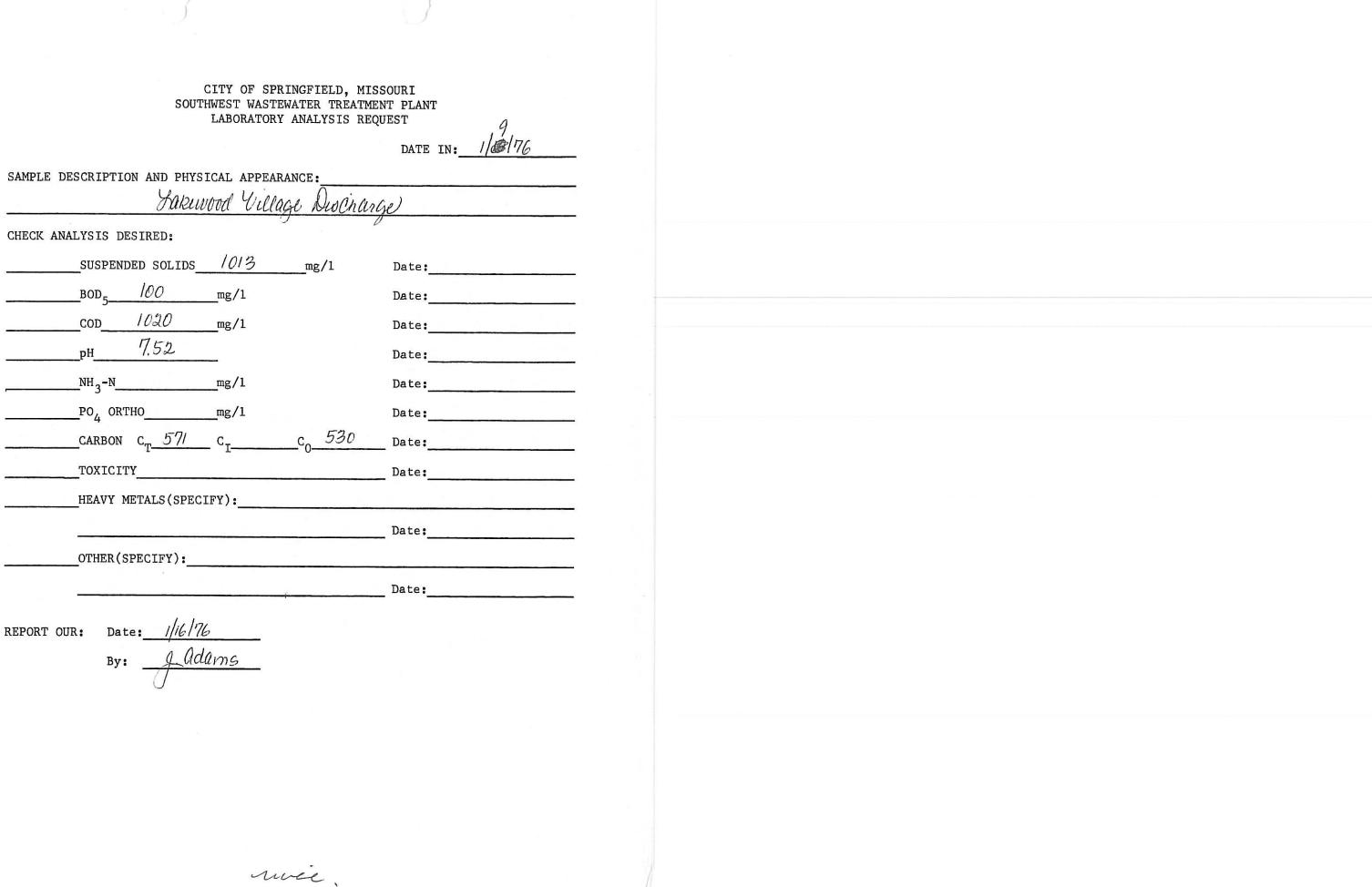
Charles H. Criswell, Associate Sanitary Engineer, Water Pollution Control

ATTENTION OF MEMO TO FILE (HARRY)	DATE December 13, 1976
DEPARTMENT	

Saturday morning, December 11, 1976, about 10:20, Steve Short and I visited the Northwest Treatment Plant to find out if there had been any strong flows during the morning. Although we noticed a Ford pickup with a camper, we did not see or hear the operator. We waited approximately 20 minutes. When we arrived a Blackburn Brothers septic tank truck was unloading. We did not see a log book out for the truck to be recorded. This truck was still unloading when we left. After removing samplers from the trunk lines we went back to the North Plant. The Blackburn Brothers Truck was still there and had been joined by a Harry German Truck. This was about 11:00. We still was no sing of the operator. After waiting about 5 minutes we left. At this time we were met by a Jack Blackburn Septic truck.

W15C. SIGNED John Witherspoon, WPCI II, S & E

CITY OF SPRINGFIELD, MISSOURI DEPARTMENT OF PUBLIC HEALTH AND WELFARE GENERAL SANITATION SECTION


Date 9-22-76	(Fill in this space if illness occurred)
TimeA.M.,P.M.	No. persons ill Symptoms
Lab. No. Misc. (C) Sealed () Unsealed (X) Official (X) Unofficial ()	Time of ingestion Time of onset of symptoms
Sample submitted by:	
Name Gary Pendergrass	
Address Water Pollutio	n Control , Missouri
Sample of	Perishable () Non-perishable ()
Condition of sample on arrival: Satis	factory () Unsatisfactory () Iced ()
Name of Manufacturer (If not same as above)	, Missouri
Reason for analysisWater Tracing	
TESTS TO BE RUN:	
Chemical & Physical Common Poiso (Eggs & Larvae) (), Insect fragment	ns (), Federal Standards (), Insects s (), Sulphites (), Preservatives () Other (), Dye Extraction Bridge Above Rader
	Sample received by
LABORATORY RESULTS & CONCLUSIONS: Analyst Positive	Sul & Date 9-23-76

(Use back for additional information)

d)			
ssouri			
()			
ssouri			
ts			
ts ()			
3-76			

BOD₅ mg/1Date: 1020 COD Date: 7.52 Date: _NH3-N_ $_{\rm mg}/1$ Date: PO4 ORTHO Date: c. 530 _carbon c_{tt_} <u>57/</u> Date: TOXICITY Date: HEAVY METALS(SPECIFY): Date: OTHER (SPECIFY): Date: REPORT OUR: Date:

1	
LD TO	

MAIL	UPS
GREYHOUND	TRUCK
CONTINENTAL	OTHER

QTY.	PKG.	SIZE		BRAND & DESCRIPTION
		16	Stabilizer	50 gal, pH 13
		7		35 11 pH 3
		5	equalizer	25 11 pl 12+
		10	activator	50 n
		4	fixer	
		1	ink-dri	4 11
		2.	fountain sol.	
				5 "
			,	99 gal.
				Jan .
			pH of total sol	ution 6.70

January 27, 1976

Mr. Galen Pellham, Architect 1966 South Glenstone Suite 102 Springfield, Missouri 65804

Dear Mr. Pellham:

This letter will confirm our telephone conversation regarding your plans for a building to house a radiator shop and our discussion of acceptable waste discharge. Your plans for a four (4) inch cleanout will allow this office ample access, should we wish to sample such a discharge in the future.

Enclosed for your convenience please find one copy of Chapter 30 of the Springfield City Code pertaining to Sewer and Use and one copy of Municipal Control of Industrial Waster, published as Appendix 4 to the Missouri Water Quality Standards.

If we may be of further assistance or can answer any questions please do not hesitate to call.

Yours truly,

Charles H. Criswell Associate Sanitary Engineer Water Pollution Control

CHC smh

Enclosures: (2)

ccs: Mr. John Nixon, Regional Administrator, Department of Natural Resources Public Works File

lusc.

January 27, 1976

Mr. Galen Pellham, Architect 1966 South Glenstone Suite 102 Springfield, Missouri 65804

Dear Mr. Pellham;

This letter will confirm our telephone conversation regarding your plans for a building to house a radiator shop and our discussion of acceptable waste discharge. Your plans for a four (4) inch cleanout will allow this office ample access, should we wish to sample such a discharge in the future.

Enclosed for your convenience please find one copy of Chapter 30 of the Springfield City Code pertaining to Sewer and Use and one copy of Municipal Control of Industrial Wastes, published as Appendix 4 to the Missouri Water Quality Standards.

If we may be of further assistance or can answer any questions please do not hesitate to call.

Yours truly,

Charles H. Criswell Associate Sanitary Engineer Water Pollution Control

CHC:mh

Enclosures: (2)

ccs: /Mr. John Nixon, Regional Administrator, Department of Natural Resources / Public Works File

ATTENTION OF ...

DEPARTMENT

Mr. Robert R. Schaefer, P.E.

DATE July 2, 1975

Superintendent of Sanitary Services

Through: Charles H. Criswell, Associate Sanitary Engineer

A pollution problem has arisen in my section of the City which I feel deserves some attention. The problem involves dry cleaning establishments, some of which are disposing of a depleted or contaminated filter media in alleys, driveways, ditches, etc. As I understand it, when the filter media is dirty, the dry cleaning fluid is transferred to another vessel for reuse and the "filter mud" is removed. Because of some residual dry cleaning fluid this material is flammable and when carried away by trainfall becomes a water pollution problem. I asked Greg Cole about disposal of the solid waste and proposed to write a form letter to all dry cleaning establishments concerning this problem. He indicated he was concerned with a fire hazard and would think about alternatives and let me know later. However, to my knowledge, no decision was made before Greg left. I feel that the fire hazard involved is probably not any more serious than in other solid wastes we now receive at the landfill. I would like to know your feelings on this matter as to any course of action which should be taken.

JRL:cc

Misc.

SIGNED J. R. Lyman, Water Pollution Control Insp Surveillance & Enforcement

T	
Imp	

CUAJedlove

September 24, 1974

Technical Director Western Chemical Company 1345 Taney North Kansas City, Missouri

Dear Sir:

The City of Springfield, Missouri has established regulations for the discharge of wastes into sanitary and storm sewers. Please find enclosed one copy of Chapter 30, Springfield City Code. We have discussed a number of revisions to this document but it would be premature to discuss specifics at this time.

In addition, the City controls further the discharge of substances considered detrimental to biological processes into its sanitary sewers. We adhere closely to Municipal Control of Industrial Waste published as Appendix #4, Missouri Effluent Guidelines, which suggests parameter limits for most heavy metal ions, cyanide, phenols, etc.

If we may be of further assistance, please do not hesitate to call on us.

Yours truly,

Charles H. Criswell Associate Sanitary Engineer Water Pollution Control

CHC:cc Enclosure cc: Mr. Jim Burris, Regional Engineer, Missouri Clean Water Commission

wigo

Gentlemen:

Western Chemical Company is interested in assisting their customers in meeting local discharge regulations. If your municipality has established regulations for the discharge of wastes into sanitary or storm sewers, we would appreciate a copy mailed to:

> Technical Director Western Chemical Company 1345 Taney North Kansas City, Missouri, 64116

If no regulations exist, please check the box below and return this letter.

Thank you for your assistance.

Sincerely,

Territory Manager

/sw

- GDW	SPRINGFIELD	1
	L OEE	
D.E. 9.	163	
0.6 %	RIFO.	
E.E.S.	CHLY	
. ECN.	FILE	1
- VI.I.1-1		
I Julia D	PLEASE	
REH	HANDLE	1

No Applicable Waste Discharge Regulations

misc

WATER TREATMENT PROGRAMS FOR INDUSTRY SINCE 1890

September 11, 1973

Mr. Wayne E. Sanders Missouri Clean Water Commission P.O. Box 154 Jefferson City, Missouri 65101

Dear Wayne:

This letter will confirm our recent conversation while you were in Springfield last Thursday, September 6, and attempt to answer the questions you had then. You explained that according to the State of Missouri Continuing Planning Process, Springfield is virtually surrounded by "Water Quality Limited Segments" of stream. This means, to the City, that for all proposed discharges to the streams, requiring permits under the National Pollution Discharge Elimination System, extensive analyses must be made to determine precise allocation of loading to these streams. The data thus collected will be used in a mathematical stream model, and the results obtained from this model can then be used to determine precise limits to be imposed in granting N.P.D.E.S. permits. You gave me a list of those industries who had applied for permits and asked if I would supply you with additional firms which had discharges and should be included in a sampling program. Enclosed herein you will find this list.

I was interested to note in your letter that Kandas City is asking for information regarding N.P.D.E.S. permits on their building permit applications. The points we need a legal interpretation on are as follows: First, we are revising our building permit applications and anticipate including a question to the effect, "If a discharge other than to the sanitary sewer is anticipated, has a permit under the N.P.D.E.S. program been applied for?" We can now envision applications for building permits with this question answered negatively or unanswered. Legally, can we refuse to issue a permit until the stipulations of N.P.D.E.S. are met. Legally, is the City of Springfield in violation of any law if it issues a building permit to any person required to apply for a permit under the provisions of Section 204.051 of S.B. 321. Does the point in question hinge on whether or not a building permit is considered a contract so that 204.091 applies, or is another section applicable.

Mr. Wayne E. Sainders September 11, 1973 Page -2-

Second, our surveillance and enforcement section has been operating in the field for more than one year now under the philosophy of advising industry not only of apparent violations of City Ordinances but also of State and Federal Law. This approach has been used for a number of reasons. It has helped us to obtain the voluntary compliance of industry since the threat of enforcement from the State and Federal levels is much more severe than from a local level. Also, through verbal agreement with Commission staff, we understand that the Commission holds the City responsible to uphold the State Laws within the City Limits. While this approach is easier than most and has gained results (out of 80-90 cases in which we have contacted industry, all have shown a willingness to work toward compliance, and we have not been invited to court yet) and is probably a desirable means, our administration still needs to know, do we as a City have a legal obligation to "enforce" or police or uphold State Laws within the municipal limits. Does the State maintain that we have a moral obligation or a legal obligation. If either, am I, or one of my representatives, when explaining provisions of S.B. 321 to some "person", acting as an agent of the State. Also, could this legal opinion speak to the same question(s) as they apply to PL 92-500, or if not, could you direct them through the proper channel.

Let me know what transpires in your meeting with E.P.A. We are anxious to give you whatever aid we can in working toward a satisfactory completion of the project so that Springfield may be brought into compliance with the grant regulations. We're looking forward to your next visit.

If we may be of any further assistance prior to that time, please don't hesitate to call.

Yours truly,

Charles H. Criswell Associate Sanitary Engineer

CHC:cc Enclosure

cc: Mr. Jim Burris, Rggional Engineer, Missouri Clean Water Commission Mr. Howard Wright, City Attorney, City of Springfield, Missouri Springfield Newspapers, Inc.
Hiland Dairy, Inc.
3-M Company
Zenith Radio Corp. of Mo.
Edel Ford Tractor Co.
Tindle Mills, Inc.
M.F.A. Milling Co.
City Utilities Power Plant
National By-Products, Inc.
M.F.A. Packing Co.
Package Treatment Plant
Griesemer Quarries
Reliable Chevrolet, Inc.
Southwest Missouri State University
Discharge near Frisco Yards
Sequiota Spring on Galloway Branch

651 Boonville
1133 E. Kearney
3211 E. Trafficway
2500 E. Kearney
1630 E. Chestnut Expressway
701 E. Chestnut
506 N. Boonville
Lake Springfield
3401 N. Grant
2050 E. Trafficway
Lakewood Hills--Fred Morriset
Rt. 2, Springfield, Mo.
601 E. Trafficway
901 S. National
Jordan Creek West of Main
(Non-Point Source)

September 24, 1973

TO: WAYNE SANDERS , Missouri Clean Water Commission

FROM: BOB LINDHOLM

Wayne:

I have the copy of the September 11 letter from Charles Chriswell of the City of Springfield. As you probably know, the Missouri statutes provide that the office of the Attorney General provide opinions to state employees and it generally is the job of city employees to get answers to questions such as those posed by Mr. Chriswell from the city attorney. Some of the questions he asks will require interpretation of the ordinances of the City of Springfield in any event.

Should Jack Smith want answers to questions similar to those posed by Mr. Chriswell, then we should have a formal opinion request so that we can accurately define the questions and therefore give responsive answers.

As you can readily see, the answers to many of the questions in Mr. Chriswell's letter, such as whether he would be an agent of the federal government in his dealings with Public Law 92-500 are not proper questions for the Attorney General of the State of Missouri. Please give me a call if you wish to discuss this matter. Thanks very much.

Be L.

mese

CITY OF SPRINGFIELD

City Hall 830 Boonville Avenue Springfield, Missouri 65802 417-865-1611

April 12, 1973

NOTICE

INFORMATION BULLETIN

TO: Owner and operators of car and truck wash facilities and similar uses

SUBJECT: PLUMBING CODE-SECTION P-802.0, STORM WATER DRAINAGE TO SEWAGE PROHIBITED

It has come to the attention of the building regulations section, Public Works Department, that a number of car wash drains have been installed in violation of the above cited section of the plumbing code.

Sanitary sewer drains which are open to storm water must be covered by a roof and surrounding surface drainage must be diverted from the drains.

Full enforcement of the cited section of the plumbing code will be effective beginning May 15, 1973 and those car and truck washes or similar uses, which are in violation of the plumbing code, will be subject to having the water meter removed or other enforcement action.

Any questions regarding this bulletin should be directed to Jerry King, Public Works Department, City Hall.

misc.

CITY OF SPRINGFIELL

City Hall 830 Boonville Avenue Springfield, Missouri 65802 417-865-1611

April 12, 1973

NOTICE

INFORMATION BULLETIN

TO: Owner and operators of car and truck wash facilities and similar uses

SUBJECT: PLUMBING CODE-SECTION P-802,0, STORM WATER DRAINAGE TO SEWAGE PROHIBITED

It has come to the attention of the building regulations section, Public Works Department, that a number of car wash drains have been installed in violation of the above cited section of the plumbing code.

Sanitary sewer drains which are open to storm water must be covered by a roof and surrounding surface drainage must be diverted from the drains.

Full enforcement of the cited section of the plumbing code will be effective beginning May 15, 1973 and those car and truck washes or similar uses, which are in violation of the plumbing code, will be subject to having the water meter removed or other enforcement action.

Any questions regarding this bulletin should be directed to Jerry King, Public Works Department, City Hall.

CITTY OF SPRINGFIELD

City Hall 830 Boonville Avenue Springfield, Missouri 65802 417-865-1611

April 12, 1973

NOTICE

INFORMATION BULLETIN

TO: Owner and operators of car and truck wash facilities and similar uses

SUBJECT: PLUMBING CODE-SECTION P-802,0, STORM WATER DRAINAGE TO SEWAGE PROHIBITED

It has come to the attention of the building regulations section, Public Works Department, that a number of car wash drains have been installed in violation of the above cited section of the plumbing code.

Sanitary sewer drains which are open to storm water must be covered by a roof and surrounding surface drainage must be diverted from the drains.

Full enforcement of the cited section of the plumbing code will be effective beginning May 15, 1973 and those car and truck washes or similar uses, which are in violation of the plumbing code, will be subject to having the water meter removed or other enforcement action.

Any questions regarding this bulletin should be directed to Jerry King, Public Works Department, City Hall.

at secondaring (frems) a		
F 4415		

CITY OF SPRINGFIELL

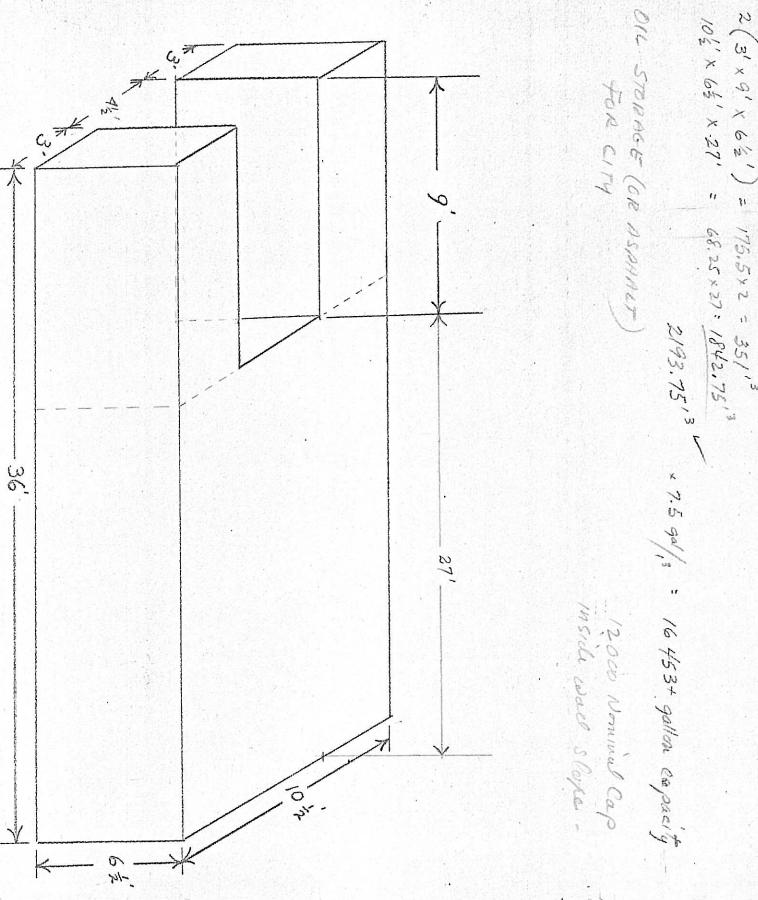
City Hall 830 Boonville Avenue Springfield, Missouri 65802 417-865-1611

April 12, 1973

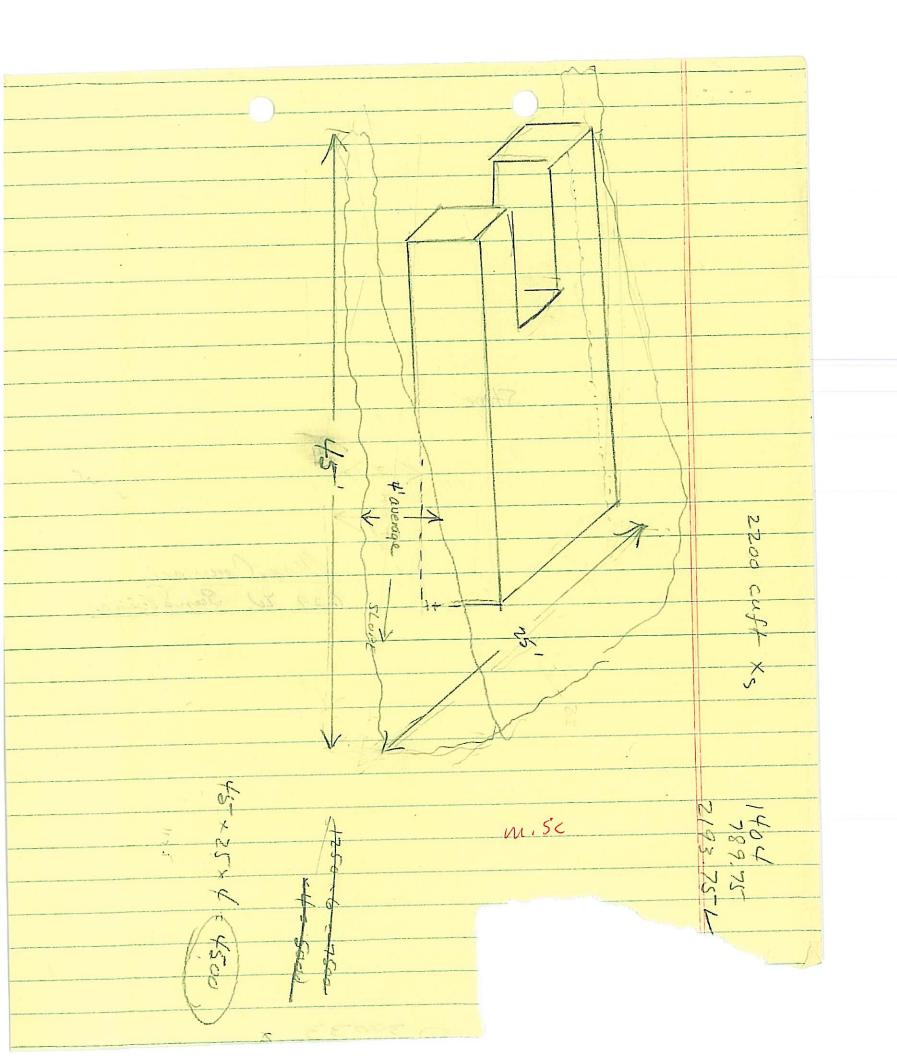
NOTICE

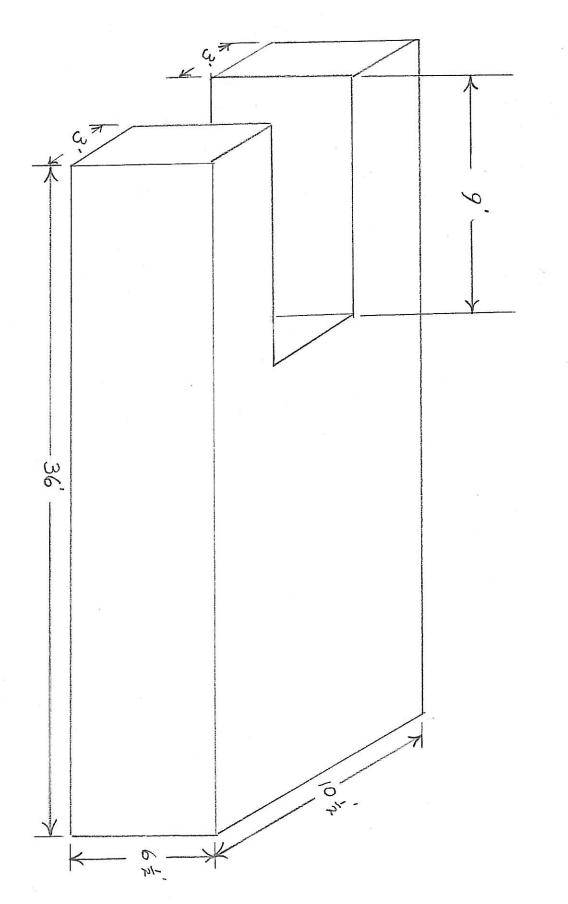
INFORMATION BULLETIN

TO: Owner and operators of car and truck wash facilities and similar uses


SUBJECT: PLUMBING CODE-SECTION P-802,0, STORM WATER DRAINAGE TO SEWAGE PROHIBITED

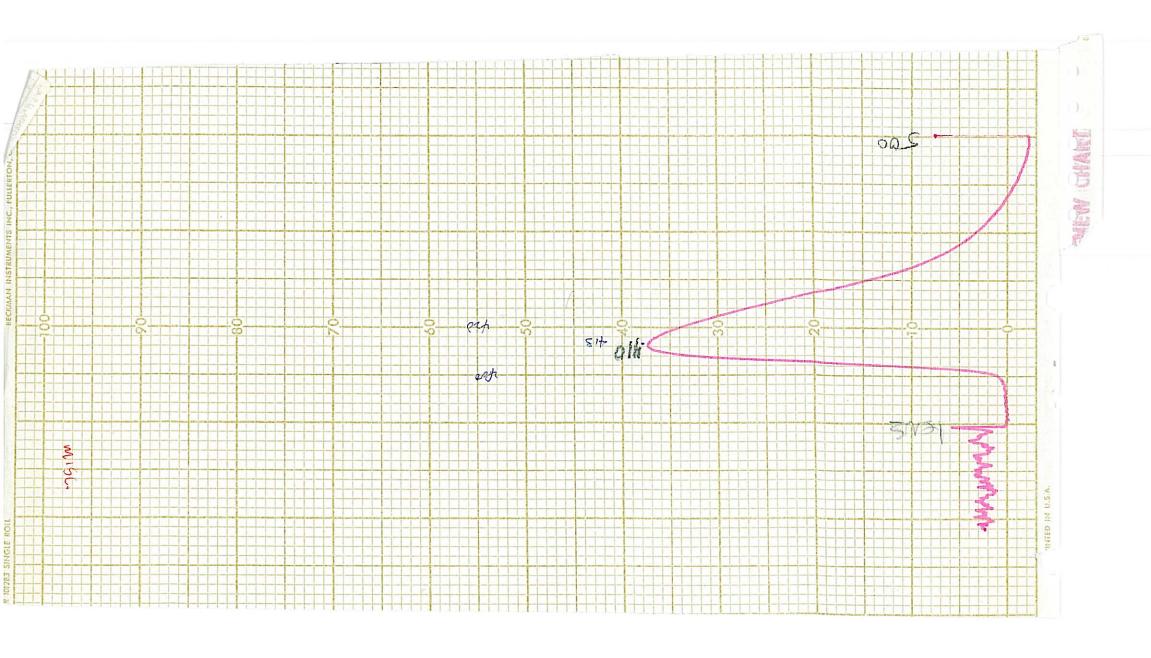
It has come to the attention of the building regulations section, Public Works Department, that a number of car wash drains have been installed in violation of the above cited section of the plumbing code.


Sanitary sewer drains which are open to storm water must be covered by a roof and surrounding surface drainage must be diverted from the drains.


Full enforcement of the cited section of the plumbing code will be effective beginning May 15, 1973 and those car and truck washes or similar uses, which are in violation of the plumbing code, will be subject to having the water meter removed or other enforcement action.

Any questions regarding this bulletin should be directed to Jerry King, Public Works Department, City Hall.

Mist


Instint Park West	1. Ring offset M.H. PrecAST-OFFSET & COACKed. 2. No Flow line for TAP.	# IL 1, SMALL Drop in Liwe 2. Top PrecAst is offset of grount is falling out.	# II 1. M.H. Lid below ground kevel Approx. 1ft, 2. Second precost from bottow is offset. 3. Thind """"""""""""""""""""""""""""""""""""	4. Pipe from drop over flow is not flush with inside of S. Top section of precast is offset & their is some M.H.	Line of cloged up between 3 x 4 M.H., # TO 1. Second PrecAst from bottom is offset at the second of	# I 1. Second Precipet from bottom is offset & Leaking.	ATT. 1 Lestitration between Invent & floor.	
	west M.H							so we sen

CITY OF CORINGFIELD, MISSOURL DEPARTMENT OF PUBLIC HEALTH AND WELFARE GENERAL SANITATION SECTION

TILE UNDER Chamical MISC.

Date 4-24-73	(Fill in this space if illness occurred)
Time A.M., P.M.	No. persons ill Symptoms
Lab. No	Time of ingestion Time of onset of symptoms
Sealed () Unsealed (X) Official () Unofficial (X)	
Sample submitted by: Original	#188 white salid material
Name	#189 - Pungent liquid
Address	, Missouri
Sample of	Perishable () Non-perishable ()
Condition of sample on arrival: Sati Name of Manufacturer (If not same as above)	sfactory () Unsatisfactory () Iced ()
Address	, Missouri
Reason for analysis Smulstiga	trie
TESTS TO BE RUN:	
Chemical & Physical Common Pois (Eggs & Larvae) (), Insect fragmen Starches or cerals (), Filth (),	ons (), Federal Standards (), Insects ts (), Sulphites (), Preservatives () Other (X), Hydrocarra, pt
Bacteriological Total Count (), Ot	her
Total Count (), Collidim (), Co	Lue Q. Day
	Sample received by
LABORATORY RESULTS & CONCLUSIONS: Analyst	Shee Chappate 5-10-23
88 12.74	
1.34	

(Use back for additional information) Contaminated powdered Caustic soda Misc.

1973 OIL SPILL INVESTIFATIONS

- 1-2-73 -Oily painbow on Fassnight Creek traced to St. John's Hospital spilled by National Oil & Supply co.
- 1-4-73 -Oily rainbow found in storm sewer near service center tributary to Jordan at Fort traced to near Union Stockyeards. Source not found.
- 1-14-73 -Oil spill at Gospel Publishing House National Oil trailer valve burst & allowed oil to spill on graounds. Fire Dept. pumped out 700 gal. then washed down 1000 to the storm sewer.
- 1-16-73 -Wreck at Sherman & Chestnut fuel tank on tractor ruptured washed down storm sewer by fire dept.
- 1-18-73 -Oil spill at National oil Terminal trailer overturned, area diked, 18:00+ oil never left property. Mid-Land Paving cleaned up area.
- 1-24-73 -Sfill 20-30 gal. max. at Queen City Oil 1801 E Trafficway. Washed into Jordan Creek ~ 14:15.
- 1-24-73 -Spill unknown quantity "milk like" substance with butterfat total 0.6% after mixing, protein negative, ptt 6-7 into Fassnight Creek 11:00 a.m. Sampler picked upat Bennett & Weller and at Fassnight Park.
- 1-30-73 -Monley Truck Plaza small discharge to Oscar Blom ditch
- 2-6-73 -"gasoline" or cleaning solvnet odor in storm sewer south of Mid-Am. Sample taken at lipscomb, source not located.
- 2-6-73 -####### Oil scheen observed at Main & Jordan Cr. was not present at confluents of N. Jordan & S. Jordan.
- 2-26-73 -1773 N. Link Oil being dumped from pans and barrels into dirch.
 Pictures taken. Coulter Truck Leasing Co. 16:20
- 2-27-73 -Kraft Foods 140 gals. diseil fuel spilled into sanitary sewer. approx. time 5:15 A.M.
- 2-27-73 -1918 W. Division oil running from lot to drainage ditch along morth side of Division St. United Trans & Motor Serv. 10:30 A.M.
- 2-27-73 -Oil discharge from Service Station to creek next to Frisco Control
 Tower large amount of oil in creek. Trash in back of garage. 11:00 A.M.

ADDRESS ALL COMMUNICATIONS TO THE DIVISION OF HEALTH

DISTRICT NO. 5

THE DIVISION OF HEALTH OF MISSOL A OF THE DEPARTMENT OF PUBLIC HEALTH AND WELFARE

1150 East Latoka Springfield, Missouri 65804

March 17, 1972

HERBERT R. DOMKE, M.D., Dr. P.H. DIRECTOR OF THE DIVISION OF HEALTH

Mr. Everett L. Balk Sanitary Engineer Springfield Public Works Department Springfield City Hall Springfield, Missouri 65802

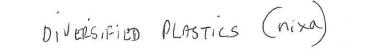
Dear Mr. Balk:

The Diversified Plastics Corporation, Nixa, Missouri, has become concerned about their disposal of waste generated from the manufacturing of expanded polystyrene products. The present problem is that the product is disposed of in an open dump near the waste treatment facilities serving Nixa, Missouri. The light weight of the product causes the small portions to blow over on the City lagoon creating problems in its operation. Also, when burned it emits black smoke creating an air pollution problem.

A review of its chemical properties indicates it to be inert at the final stage of manufacturing. It appears to begin breaking down at 85° C. resulting in Hydrogen and Benzene gases and converts back to Storax or Styrax with a Ld/50 of 2000 P.P.M. at 85° C.

It is this Division's feeling that this product would not present a health hazard if disposed of in a sanitary landfill operation.

If this office can be of further assistance to you regarding this matter, please do not hesitate to contact this office.


Very truly yours,

Clarence B. Lord

Sanitarian

CBL:mi

cc: M. D. Plummer

UNOFFICIAL

CITY OF SPRINGFIELD, MISSOUR DE: ATMENT OF PUBLIC HEALTH AND WELLABORATORY SECTION

Report of Bacteriological Examination of Water Sample

Samples collected by -

J. D. Slaughter

Date of Collection -

6-13-79

Place -

Portland & Delaware

Owner of water supply -

City

Date reported -

6-14-79

Lab.	Source of Sample	Chlorine Residual ppm	XXXXXXXXXXXXXXXX	Tech. Coliforms	Nitrate Nitrogen ppm
1432	storm Drains	age	TNTC/lOml *	TNTC/loml	*

* To numerous to count.

The above examinations were made by the City of Springfield, Department of Public Health Laboratory in accordance with the latest edition of Standard Methods of Water Analysis of the American Public Health Association. At the time this examination was made, the sample ________ the limits acceptable for drinking purposes.

The safety of a water supply depends upon proper construction and protection against contamination. A favorable bacteriological analysis alone should not be accepted as conclusive evidence of the safety of a water supply unless a survey of the supply indicates no sanitary defects. It is recommended that a water supply used for drinking purposes be analyzed routinely.

Bacteriologist Me Ca

MISC. 5 Ampling

TY OF SPRINGFIELD, MISSOURI DEPARTMENT OF PUBLIC HEALTH AND WELFARE LABORATORY SECTION

Report of Bacteriological Examination of Water Sample

Samples collected by -

G. Pendergrass

Date of Collection -

7-1-76

Place -

Storm Sewer

Owner of water supply -

Date reported -

7-1-76

Fecal coliform/100cc

Lab.	Source of Sample	Chlorine Residual ppm	Staphylococcus per 100 ml.	xerkikxsixsissek xanigkikadxidsekx x <u>xxxxxxxadkxxse</u> x	Fecal Strep xiiixxxxbe xiixxxxxxxxxxxxxxxx	
2230	stream sto	rm sewer 200	S. of Sunshine	& Oak Grove		
				<10/100	<10/100	
2231	stream sto	rm sewer 50'	S. of Seminole a	t Power Station 900/100	<10/100	24 less.
2232	Sinkhole A	rea Storm Se	wer 1000'S. of S	eminole Near Power S 690/100	tation 150/100	

The above examinations were made by the City of Springfield, Department of Public Health Laboratory in accordance with the latest edition of Standard Methods of Water Analysis of the American Public Health Association. At the time this examination was made, the sample _______ the limits acceptable for drinking purposes.

The safety of a water supply depends upon proper construction and protection against contamination. A favorable bacteriological analysis alone should not be accepted as conclusive evidence of the safety of a water supply unless a survey of the supply indicates no sanitary defects. It is recommended that a water supply used for drinking purposes be analyzed routinely.

Bacteriologist

MISC. SAMAing

CITY OF SPRINGFIELD, MISSOUR DEPARTMENT OF PUBLIC HEALTH AND WELFARE GENERAL SANITATION SECTION

Date 3-21-75	(Fill in this space if illness occurred)
Time 9:45 A.M., P.M.	No. persons ill Symptoms
Lab. No. 114 Sealed () Unsealed () Official () Unofficial ()	Time of ingestion Time of onset of symptoms
Sample submitted by:	
Name Gene Pabst	
Address <u>Sanitary Services</u>	ity Hall , Missouri
Sample of <u>Storm Sewer</u>	Perishable () Non-perishable ()
Condition of sample on arrival : Satis	factory () Unsatisfactory () Iced ()
Name of Manufacturer (If not same as above)	
Address	, Missouri
Reason for analysis <u>Butterfat</u>	
TESTS TO BE RUN:	
Chemical & Physical Common Poiso (Eggs & Larvae) (), Insect fragment Starches or cerals (), Filth (),	ns (), Federal Standards (), Insects s (), Sulphites (), Preservatives () Other (), Butterfat
Bacteriological Total Count (), Coliform (), Oth	er
	Sample received by
	No. persons ill
LABORATORY RESULTS & CONCLUSIONS: Analyst	R.M. Van Xork Date 3-21-75
Fat content 12 .01%	

(Use back for additional information)

MISCI SAMPING

CITY OF SPRINGFIELD, MISSOUF DEPARTMENT OF PUBLIC HEALTH AND WELFARE GENERAL SANITATION SECTION

Date 3-21-75	(Fill in this space if illness occurred)
Time 9:45 A.M., P.M.	No. persons ill Symptoms
Lab. No. 114 Sealed () Unsealed () Official () Unofficial ()	Time of ingestion Time of onset of symptoms
Sample submitted by:	
Name Gene Pabst	
Address Sanitary Services, Ci	ty Hall , Missouri
Sample of Storm Sewer	Perishable () Non-perishable ()
Condition of sample on arrival : Satis	factory () Unsatisfactory () Iced ()
Name of Manufacturer (If not same as above)	
Address	, Missouri
Reason for analysis Butterfat	
TESTS TO BE RUN:	
Chemical & Physical Common Poiso (Eggs & Larvae) (), Insect fragment Starches or cerals (), Filth (),	ns (), Federal Standards (), Insects s (), Sulphites (), Preservatives () Other (), Butterfat
Bacteriological Total Count (), Coliform (), Oth	er
	Sample received by
LABORATORY RESULTS & CONCLUSIONS: Analyst	R. m. Var Nort Date 3-21-75
Fat content 37 (01%)	

(Use back for additional information)

mise. Sampling

-							

Everett Balk The following tion of the storm sewer Sanitary Services June 7, 1972

6-7	5-12	5-3		5-11	3-27	Date	
	16:00	5-3 14:00		5-11 14:45	3-27 15:10	Time	
5-42-000c Evideson Transport	S-28-000c "Reyco 1"	S-27-000c Reyco - Cyclone Washdown	Steam Treating Bath (pools 20 to 50 yds)	S-26-601cc Ozark Hardwoods, from	S-25-126 Stream (Pea Ridge) above 1700 NWP, below Fulbright	Sample Number, Location	The following is a continuation of the storm sewev sampling and analyses.
14800		169		3610	1700	G ct	the 51
76		49		1000	212	C-L	torm se
76 14724 9006		120	ì	3502 4450	1488	0-0	wew sa
9006	400	25	Š	4450	1488 <50* 14500	BOD	Burrdm
560	1090	672		620	14500	23	and a
141.25		4.4.		620 139,50	28.17	NH-Z-N	nalyses.
14	9.40	3.20		o <u>.</u> 50	32.0	PO ₄	
7.16	8.02	° 00		6.31	7.52	Hq	
as soon as tube can be lined out	Will run Carbon	*BOD appears to be slightly inhibited - should run about 150		24.	Alum Sludge probably with polymer - Fish*		

Everett Balk

Sanitary Services

April 25, 1972

The following should at least partially catch you up on our storm sewer sampling. Please let me know if we can safely dispose of these samples or if there is a need to keep them longer. H. Criswell

							J												
	3-27	4-4	4-4	4-4	3-30	3-30	3-27	3-27	3-24	9		3-23	2-24	2-24	2-24	2-24	2-24	2-24	Date
	15:10	10:00	10:00	10:00	09:25	09:15	14:00	09:40	10:00	West one		15:30	11:20	09:40	09:30	09:25	09:10	09:00	Time
	8-25-126	5-24-94	8-23-93	8-22-92	s-20-000c	S-19-000c	S-18-59c	S-17-90	S-16-91			S-14-87	5-13-80	5-12-79	S-11-82	S-10-78	s-09-77t	s-08-76	Sample Numb
	Stream (Pea Ridge)		Ditch West of Plant		"Minimum" Meller's Photolab	Degreaser Meller's Photolab	Edel Tractor	Union Stockyards	Manley's Truck Plaza Drainage Ditch		E. Chestnut	MAD Warehouse, 1458	at Rogers Frisco Lagoon Dischg	Storm Sewer Chestnut	South Jordan under	Clay Pipe at MFA	ewer	Storm Sewer East	Sample Number, Location
	1700	192	152	;e600	56	66	540	308	128)		118	132	36	56		y- 35	500	C-+
	212	30	44	24	32	32	34	56	22)	E P	Co	42	15	20			20	C-1
	1468	154	108	576	24	28	506	252	40F	,		110	98	2	36			73	C-0
		1511	21090	1425	1000 1000	1000-	665	495	3]			428	17	15	22	263	5	BOD
	14500	300	2110	740	\ 25	₹ 25	400	400	220)		60	90	98	254	20	232	262	SS
	28.17	2.52	4.65	15,20	6.30	6.50	2.61	19.46	21.2		******		1.00	0.52	3.05	♦0.01	1.80	0.99	NH-ZHM
	32.0	1.16	2.47	2.04	3.97	5,62	0.54	10.37	79.97										PO ₄
	7.52	10.31	10.01	11,12	6.70	7.00	6.00					1.82 4	°.1	7.1	6.6	7.0	6.0	6.1	H
Odor, Fishey - Amine	Alum S with I	Combination of Above	Polymer- Na ₂ SO ₃ -ImnO	Methylamine						Consulety Pa	M	15	C STATE OF THE STA	Sit	ERB TOWNER BRIDE	Lm	9		COASCIUS

			(6					(Q)	15//		
TOTAL CITY 2166 300' 2410 mi	hzo	K-T4-7 VELLOW- BLUE SOUTH # 5 OWERHILL	J-S 6-9 GREENGREEN SOUTH # 4 JORDAN CO & WEST	H-S6-17 Brown RED South #3 Jordan CR # EAST	P-U 6-17 ORANGE-ORANGE SOUTH # 2 FASCINISHT CCOPE	S-Z5-16 RED BROWN SOUTH # 1 SOUTH-CREEK	Total Noeth	D-H10-16 NOATH # 3 NAGHHUGHHEAST	E-J 9-12 VELLOW BLACK NORTH #2 NORTH	D-J 6-9 RED PURPLE NORTH # NORTH NORTH WEST	SECTION LOCATION COLOR-OLD-NEWWAP TRUNK NUMBER LOCATION IN CITY
10900	10 500	700	400	400		9000	400			. 4 00	4.
7200	7200	400	600	400	400	5400	r				e=
1692100	1417700	75 600	/52 800	470 800	346100	372 400	274.400	67200	112 800	94400	- g
140 200	111 000	4 100	2 600	45 300	20700	38 300	29 200	7800	10 000	11 400	0.
69300	54700	700	10 000	12200	13600	18 200	14600	94,00	3 200	2,000	12,0
53 200	41 200	l	6400	20 200	3 400	11200	12000	10000	2000		5:
8400	8400	1	1	ı	1,	8400	i				16.
5/300	41 700	4700	3200	20 600	9700	3500	9600		1200	8400	18"
3800	3800	,	1	800	3000	ı	i				6.
26 500	24200	3200	1 800	12600	5700	1400	72		2300	•	77
16300	15/00	1	00 01 01	3200	7800	800	1200		1200		24.
7000	7000	1	- 1	1	7000	r	1				27"
333800	33 300		9 500	9800	4 600	9 400	1				80
36 400	27 200	1	,	200	16600	10 400	9200		9200		\(\omega_{\text{\tin}\ettitt{\text{\tin\etitx}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\text{\texi}\tint{\text{\text{\text{\ti}\text{\text{\text{\texi}\text{\texi}\tint{\text{\texi}\text{\ti}\titt{\text{\text{\texi}\text{\text{\texi}\text{\text{\ti
12400	12400	1	1	11 200	1700	1	1	MISC	. SAM	ling	42.

	5/115-	क्रिक इत्तराज्याहरू	Timble	50110 STATES	SOLID STHTES	1410000 -	BOU MUESCEN	facsco conceas	5.22 MERIAN COLE	CHESTALT SPRINGFIER NOW SPRINGS	
	0.47	3.50	0,82		5.84	wo	356) 356)	0.4.0	22.00	93.4 Cr	
	.125				2000	. 70	6000	^	Λ Λ	5 V	
				160?			¥87	08.3		N.	
		1%.5 55.88	0.	28.3		4.72	9326			75	
		8								45	
		\$2.90		1.86	0,056	2.34	12)	0.183		Zn f	
							C 166 C142			Pb not view	
						1	Page 60	4		And the second s	
							693 inhibition	200			
	,						bition	()			
								100000000000000000000000000000000000000			